
Modular Audio Recognition Framework

and

Text-Independent Speaker Identification

v.0.2.0

The MARF Development Group

Represented by:

Ian Clément

Serguei A. Mokhov

Dimitrios Nicolacopoulos

Stephen Sinclair

Montréal, Québec, Canada

Mon Feb 10 05:06:31 EST 2003

Contents

0.1 Intro . 6

0.1.1 What is MARF? . 6

0.1.2 Authors . 6

0.1.3 Purpose . 6

0.1.4 Project Source and Location . 6

0.1.5 Why Java? . 7

0.2 MARF Architecture . 8

0.2.1 Application Point of View . 8

0.2.2 Packages and Physical Layout . 8

0.2.3 Current Limitations . 13

0.3 Methodology . 14

0.3.1 Storage . 14

0.3.1.1 Speaker Database . 14

0.3.1.2 Storing Features, Training, and Classification Data 14

0.3.1.3 File Location . 16

0.3.1.4 Sample and Feature Sizes . 16

0.3.1.5 Parameter Passing . 16

0.3.1.6 Result . 16

0.3.1.7 Sample Format . 17

0.3.1.8 Sample Loading Process . 17

0.3.2 Preprocessing . 20

0.3.2.1 Normalization . 20

0.3.2.2 FFT Filter . 20

0.3.2.3 Low-Pass Filter . 23

0.3.2.4 High-Pass Filter . 23

1

MARF - v.0.2.0 2

0.3.2.5 Band-Pass Filter . 23

0.3.2.6 High Frequency Boost . 23

0.3.2.7 Noise Removal . 25

0.3.3 Feature Extraction . 26

0.3.3.1 The Hamming Window . 26

0.3.3.2 Fast Fourier Transform (FFT) . 26

0.3.3.3 Linear Predictive Coding (LPC) . 28

0.3.3.4 Random Feature Extraction . 30

0.3.4 Classification . 31

0.3.4.1 Chebyshev Distance . 31

0.3.4.2 Euclidean Distance . 31

0.3.4.3 Minkowski Distance . 33

0.3.4.4 Mahalanobis Distance . 33

0.3.4.5 Artificial Neural Network . 33

0.3.4.6 Random Classification . 35

0.4 GUI . 36

0.4.1 Spectrogram . 36

0.4.2 Wave Grapher . 36

0.5 Sample Data and Experimentation . 37

0.5.1 Sample Data . 37

0.5.2 Comparison Setup . 37

0.5.3 What Else Could/Should/Will Be Done . 39

0.5.3.1 Combination of Feature Extraction Methods 40

0.5.3.2 Entire Recognition Path . 40

0.5.3.3 More Methods . 40

0.6 Experementation Results . 41

0.6.1 Notes . 41

0.6.2 Configuration Explained . 42

0.6.3 Consolidated Results . 43

0.7 Conclusions . 50

0.8 APPENDIX . 52

0.8.1 Spectrogram Examples . 52

0.8.2 MARF Source Code . 52

MARF - v.0.2.0 3

0.8.3 SpeakerIdentApp and SpeakersIdentDb Source Code 53

0.8.3.1 SpeakerIdentApp.java . 53

0.8.3.2 SpeakersIdentDb.java . 60

0.8.4 TODO . 68

List of Figures

1 Overall Architecture . 9

2 The Core Pipeline . 10

3 MARF Java Packages . 11

4 Storage . 15

5 Preprocessing . 21

6 Normalization of aihua5.wav from the testing set. 22

7 FFT of normalized aihua5.wav from the testing set. 22

8 Low-pass filter applied to aihua5.wav. 23

9 High-pass filter applied to aihua5.wav. 24

10 Band-pass filter applied to aihua5.wav. 24

11 High frequency boost filter applied to aihua5.wav. 25

12 Feature Extraction . 27

13 Classification . 32

14 GUI Package . 36

15 LPC spectrogram obtained for ian15.wav . 52

16 LPC spectrogram obtained for graham13.wav . 52

4

List of Tables

1 Speakers contributed their voice samples. 37

2 Consolidated results, Part 1. 44

3 Consolidated results, Part 2. 45

4 Consolidated results, Part 3. 46

5 Consolidated results, Part 4. 47

6 Consolidated results, Part 5. 48

7 Consolidated results, Part 6. 49

5

MARF - v.0.2.0 6

0.1 Intro

0.1.1 What is MARF?

MARF stands for Modular Audio Recognition Framework.

Four students of Concordia University have started this as a course project in September 2002. Now it’s
a project in its own being maintained and developed as we have time for it. If you have some suggestions,
contributions to make, or for bug reports, don’t hesitate to contact us :-)

Please report bugs to marf-bugs@lists.sf.net.

0.1.2 Authors

In alphabetical order:

• Ian Clément, i_clemen@cs.concordia.ca

• Serguei Mokhov, mokhov@cs.concordia.ca, a.k.a Serge

• Dimitrios Nicolacopoulos, d_nicola@cs.concordia.ca, a.k.a Jimmy

• Stephen Sinclair, step_sin@cs.concordia.ca, a.k.a. Steve, radarsat1

For MARF-related issues please contact us at marf-devel@lists.sf.net.

0.1.3 Purpose

Our main goal is to build a general framework to allow developers in the audio-recognition industry (be
it speech, voice, sound, etc.) to choose and apply various methods, contrast and compare them, and use
them in their applications. As a proof of concept, a user frontend application for Text-Independent (TI)
Speaker Identification has been created on top of the framework (the SpeakerIdentApp program).

0.1.4 Project Source and Location

Our project from the its inception has always been an open-source project. All releases including the
most current one should most of the time be accessible via <http://marf.sourceforge.net>. We have
complete API documentation as well as this manual and all the sources avilable to download through this
web page.

MARF - v.0.2.0 7

0.1.5 Why Java?

We have chosen to implement our project using the Java programming language. This choice is justified
by the binary portability of the Java applications as well as facilitating memory management tasks and
other issues, so we can concentrate more on the algorithms instead. Java also provides us with built-in
types and data-structures to manage collections (build, sort, store/retrieve) efficiently.

MARF - v.0.2.0 8

0.2 MARF Architecture

Before we begin, you should understand the basic MARF system architecture. Understanding how the
parts of MARF interact will make the next sections somewhat clearer. This document presents architecture
of the MARF system, including the layout of the physical directory structure, and Java packages.

Let’s take a look at the general MARF structure in Figure 1. The MARF class is the central “server”
and configuration placeholder which major method - the core pipeline - a typical pattern recognition
process. The figure presents basic abstract modules of the architecture. When a developer needs to add
or use a module, they derive from the generic ones,

The core pipeline sequence diagram from an application up until the very end result is presented on
Figure 2. It includes all major participants as well as basic operations. The participants are the modules
responsible for a typical general pattern recognition pipeline.

Consequently, the framework has the mentioned basic modules, as well as some additional entities to
manage storage and serialization of the input/output data.

0.2.1 Application Point of View

An application, using the framework, has to choose the concrete configuration and submodules for pre-
processing, feature extraction, and classification stages. There is an API the application may use defined
by each module or it can use them through the MARF.

There are two phases in MARF’s usage by an application:

• Training, i.e. train()

• Recognition, i.e. recognize()

Training is performed on a virgin MARF installation to get some training data in. Recognition is an
actual identification process of a sample against previously stored patterns during training.

0.2.2 Packages and Physical Layout

The Java package structure is in Figure 3. The following is the basic structure of MARF:

marf.*

MARF.java - The MARF Server

Supports Training and Recognition mode

and keeps all the configuration settings.

MARF - v.0.2.0 9

Figure 1: Overall Architecture

MARF - v.0.2.0 10

Figure 2: The Core Pipeline

MARF - v.0.2.0 11

Figure 3: MARF Java Packages

MARF - v.0.2.0 12

marf.Preprocessing.* - The Preprocessing Package

/marf/Preprocessing/

Preprocessing.java - Abstract Preprocessing Module, has to be subclassed

/Endpoint/*.java - Endpoint Filter as implementation of Preprocessing

/Dummy/*.java

/FFTFilter/

FFTFilter.java

LowPassFilter.java

HighPassFilter.java

BandpassFilter.java - Bandpass Filter as implementation of Preprocessing

HighFrequencyBoost.java

marf.FeatureExtraction.* - The Feature Extraction Package

/marf/FeatureExtraction/

FeatureExtraction.java

/FFT/FFT.java - FFT implementation of Preprocessing

/LPC/LPC.java - LPC implementation of Preprocessing

/Cepstral/*.java

/Segmentation/*.java

/F0/*.java

marf.Classification.* - The Classification Package

/marf/Classification/

Classification.java

/NeuralNetwork/NeuralNetwork.java

/Stochastic/*.java

/Markov/*.java

/Distance/

Distance.java

EuclideanDistance.java

ChebyshevDistance.java

MinkowskiDistance.java

MahalonobisDistance.java

marf.Storage.* - The Physical Storage Management Interface

MARF - v.0.2.0 13

/marf/Storage/

Sample.java

ModuleParams.java

TrainingSet.java

Result.java

StorageManager.java - Interface to be implemented by the above modules

SampleLoader.java - Should know how to load different sample format

/Loaders/*.* - WAV, MP3, ULAW, etc.

marf.Stats.* - The Statistics Package meant to collect various types of stats.

/marf/Stats/

StatsCollector.java - Time took, noise removed, patterns stored, modules available, etc.

marf.gui.* - GUI to the graphs and configuration

/marf/gui/

Spectrogram.java

WaveGrapher.java

0.2.3 Current Limitations

Our current pipeline is maybe somewhat too rigid. That is, there’s no way to specify more than one
preprocessing or feature extraction module to process the same sample in one pass. (In the case of
preprocessing one filter may be used along with normalization together, or just normalization by itself).

Also, it assumes that the whole sample is loaded before doing anything with it, instead of sending
parts of the sample a bit at a time. Perhaps this simplifies things, but it won’t allow us to deal with large
samples at the moment. However, it’s not a problem for our framework and the application since memory
is cheap and samples are not too big. Additionally, we have streaming support already in the WAVLoader

and some modules support it, but the final conversion to streaming did not happen in this release.

MARF provides only limited support for inter-module dependency. It is possible to pass module-
specific arguments, but problems like number of parameters mismatch between feature extraction and
classification, and so on are not tracked.

MARF - v.0.2.0 14

0.3 Methodology

This section presents what methods and algorithms were implemented and used in this project. We
overview storage issues first, then preprocessing methods followed by feature extraction, and ended by
classification.

0.3.1 Storage

Figure 4 presents basic Storage modules and their API.

0.3.1.1 Speaker Database

We store specific speakers in a comma-separated (CSV) file, speakes.txt within the application.

It has the following format:

<id:int>,<name:string>,<training-samples:list>,<testing-samples:list>

Sample lists are defined as follows:

<*-sample-list> := filename1.wav|filename2.wav|...

0.3.1.2 Storing Features, Training, and Classification Data

We defined a standard StorageManager interface for the modules to use. That’s part of the StorageManager
interface which each module will override because each a module has to know how to serialize itself, but
the application, using MARF, should not care. Thus, this StorageManager is a base class with abstract
methods dump() and restore(). And these functions would generalize the model’s storing, in the sense
that they are somehow “read” and “written”.

We have to store data we used for training for later use in the classification process. For this we pass
FFT (Section 0.3.3.2) and LPC (Section 0.3.3.3) feature vectors through the TrainingSet/TrainingSample
class pair, which, as a result, store mean vectors (clusters) for our training models.

In the Neural Network we use XML. The only reason XML and text files have been suggested is to
allow us to easily modify values in a text editor and verify the data visually.

In the Neural Network classification, we are using one net for all the speakers. We had thought that
one net for each speaker would be ideal, but then we’ll lose too much discrimination power. But doing
this means that the net will need complete re-training for each new training utterance (or group thereof).

We have a training/testing script that lists the location of all the wave files to be trained along with
the identification of the speaker - testing.sh.

MARF - v.0.2.0 15

Figure 4: Storage

MARF - v.0.2.0 16

0.3.1.3 File Location

We decided to keep all the data and intermediate files in the same directory or subdirectories of that of
the application.

• marf.Storage.TrainingSet.* - represent training sets (global clusters) used in training with differ-
ent preprocessing and feature extraction methods; they can either be gzipped binary (.bin) or CSV
text (.csv).

• speakers.txt.stats - binary statistics file.

• marf.Classification.NeuralNetwork.*.xml - XML file representing a trained Neural Net for all
the speakers in the database.

• training-samples/ - directory with WAV files for training.

• testing-samples/ - directory with WAV files for testing.

0.3.1.4 Sample and Feature Sizes

Wave files are read and outputted as an array of data points that represents the waveform of the signal.

Different methods will have different feature vector sizes. It depends on what kind of precision one de-
sires. In the case of FFT, a 1024 FFT will result in 512 features, being an array of “doubles” corresponding
to the frequency range.

[1] said about using 3 ms for phoneme analysis and something like one second for general voice analysis.
At 8 kHz, 1024 samples represents 128 ms, this might be a good compromise.

0.3.1.5 Parameter Passing

A generic ModuleParams container class has been created to for an application to be able to pass module-
specific parameters when specifying model files, training data, amount of LPC coefficients, FFT window
size, logging/stats files, etc.

0.3.1.6 Result

When classification is over, its result should be stored somehow for further retrieval by the application.
We have defined the Result object to carry out this task. It contains ID of the subject identified as well
as some additional statistics (such as second closest speaker and distances from other speakers, etc.)

MARF - v.0.2.0 17

0.3.1.7 Sample Format

The sample format used for our samples was the following:

• Audio Format: PCM signed (WAV)

• Sample Rate: 8000 Hz

• Audio Sample Size: 16 bit

• Channels: 1 (mono)

• Duration: from about 7 to 20 seconds

All training and testing samples were recorded through an external sound recording program (MS
Sound Recorder) using a standard microphone. Each sample was saved as a WAV file with the above
properties and stored in the appropriate folders where they would be loaded from within the main appli-
cation. The PCM audio format (which stands for Pulse Code Modulation) refers to the digital encoding of
the audio sample contained in the file and is the format used for WAV files. In a PCM encoding, an analog
signal is represented as a sequence of amplitude values. The range of the amplitude value is given by the
audio sample size which represents the number of bits that a PCM value consists of. In our case, the audio
sample size is 16-bit which means that that a PCM value can range from 0 to 65536. Since we are using
PCM-signed format, this gives an amplitude range between −32768 and 32768. That is, the amplitude
values of each recorded sample can vary within this range. Also, this sample size gives a greater range
and thus provides better accuracy in representing an audio signal then using a sample size of 8-bit which
limited to a range of (−128, 128). Therefore, a 16-bit audio sample size was used for our experiments in
order to provide the best possible results. The sampling rate refers to the number of amplitude values
taken per second during audio digitization. According to the Nyquist theorem, this rate must be at least
twice the maximum rate (frequency) of the analog signal that we wish to digitize ([3]). Otherwise, the
signal cannot be properly regenerated in digitized form. Since we are using an 8 kHz sampling rate, this
means that actual analog frequency of each sample is limited to 4 kHz. However, this limitation does not
pose a hindrance since the difference in sound quality is negligible ([1]). The number of channels refers
to the output of the sound (1 for mono and 2 for stereo – left and right speakers). For our experiment, a
single channel format was used to avoid complexity during the sample loading process.

0.3.1.8 Sample Loading Process

To read audio information from a saved voice sample, a special sample-loading component had to be
implemented in order to load a sample into an internal data structure for further processing. For this,
certain sound libraries (javax.sound.sampled) were provided from the Java programming language which
enabled us to stream the audio data from the sample file. However once the data was captured, it had
to be converted into readable amplitude values since the library routines only provide PCM values of
the sample. This required the need to implement special routines to convert raw PCM values to actual
amplitude values (see SampleLoader class in the Storage package).

MARF - v.0.2.0 18

The following pseudo-code represents the algorithm used to convert the PCM values into real amplitude
values ([7]):

function readAmplitudeValues(Double Array : audioData)

{

Integer: MSB, LSB,

index = 0;

Byte Array: AudioBuffer[audioData.lenth * 2];

read audio data from Audio stream into AudioBuffer;

while(not reached the end of stream OR index not equal to audioData.length)

{

if(Audio data representation is BigEndian)

{

// First byte is MSB (high order)

MSB = audioBuffer[2 * index];

// Second byte is LSB (low order)

LSB = audioBuffer[2 * index + 1];

}

else

{

// Vice-versa...

LSB = audioBuffer[2 * index];

MSB = audioBuffer[2 * index + 1];

}

// Merge high-order and low-order byte to form a 16-bit double value.

// Values are divided by maximum range

audioData[index] = (merge of MSB and LSB) / 32768;

}

}

This function reads PCM values from a sample stream into a byte array that has twice the length of
audioData; the array which will hold the converted amplitude values (since sample size is 16-bit). Once
the PCM values are read into audioBuffer, the high and low order bytes that make up the amplitude
value are extracted according to the type of representation defined in the sample’s audio format. If the
data representation is big endian, the high order byte of each PCM value is located at every even-numbered
position in audioBuffer. That is, the high order byte of the first PCM value is found at position 0, 2 for

MARF - v.0.2.0 19

the second value, 4 for the third and so forth. Similarly, the low order byte of each PCM value is located
at every odd-numbered position (1, 3, 5, etc.). In other words, if the data representation is big endian,
the bytes of each PCM code are read from left to right in the audioBuffer. If the data representation is
not big endian, then high and low order bytes are inversed. That is, the high order byte for the first PCM
value in the array will be at position 1 and the low order byte will be at position 0 (read right to left).
Once the high and low order bytes are properly extracted, the two bytes can be merged to form a 16-bit
double value. This value is then scaled down (divide by 32768) to represent an amplitude within a unit
range (−1, 1). The resulting value is stored into the audioData array, which will be passed to the calling
routine once all the available audio data is entered into the array. An additional routine was also required
to write audio data from an array into wave file. This routine involved the inverse of reading audio data
from a sample file stream. More specifically, the amplitude values inside an array are converted back to
PCM codes and are stored inside an array of bytes (used to create new audio stream). The following
illustrates how this works:

public void writePCMValues(Double Array: audioData)

{

Integer: word = 0,

index = 0;

Byte Array: audioBytes[(number of ampl. values in audioData) * 2];

while(index not equal to (number of ampl. values in audioData * 2))

{

word = (audioData[index] * 32768);

extract high order byte and place it in appropriate position in audioBytes;

extract low order byte and place it in appropriate position in audioBytes;

}

create new audio stream from audioBytes;

}

MARF - v.0.2.0 20

0.3.2 Preprocessing

This section outlines the preprocessing mechanisms considered and implemented in MARF. We present
you with the API and structure in Figure 5, along with the description of the methods.

0.3.2.1 Normalization

Since not all voices will be recorded at exactly the same level, it is important to normalize the amplitude
of each sample in order to ensure that features will be comparable. Audio normalization is analogous to
image normalization. Since all samples are to be loaded as floating point values in the range [−1.0, 1.0], it
should be ensured that every sample actually does cover this entire range.

The procedure is relatively simple: find the maximum amplitude in the sample, and then scale the
sample by dividing each point by this maximum. Figure 6 illustrates normalized input wave signal.

0.3.2.2 FFT Filter

The FFT filter is used to modify the frequency domain of the input sample in order to better measure the
distinct frequencies we are interested in. Two filters are useful to speech analysis: high frequency boost,
and low-pass filter (yet we provided more of them, to toy around).

Speech tends to fall off at a rate of 6 dB per octave, and therefore the high frequencies can be boosted
to introduce more precision in their analysis. Speech, after all, is still characteristic of the speaker at
high frequencies, even though they have a lower amplitude. Ideally this boost should be performed via
compression, which automatically boosts the quieter sounds while maintaining the amplitude of the louder
sounds. However, we have simply done this using a positive value for the filter’s frequency response. The
low-pass filter (Section 0.3.2.3) is used as a simplified noise reducer, simply cutting off all frequencies
above a certain point. The human voice does not generate sounds all the way up to 4000 Hz, which is the
maximum frequency of our test samples, and therefore since this range will only be filled with noise, it
may be better just to cut it out.

Essentially the FFT filter is an implementation of the Overlap-Add method of FIR filter design. The
process is a simple way to perform fast convolution, by converting the input to the frequency domain,
manipulating the frequencies according to the desired frequency response, and then using an Inverse-FFT
to convert back to the time domain. Figure 7 demonstrates the normalized incoming wave form translated
into the frequency domain.

The code applies the square root of the hamming window to the input windows (which are overlapped
by half-windows), applies the FFT, multiplies the results by the desired frequency response, applies the
Inverse-FFT, and applies the square root of the hamming window again, to produce an undistorted output.

Another similar filter could be used for noise reduction, subtracting the noise characteristics from the
frequency response instead of multiplying, thereby remove the room noise from the input sample.

MARF - v.0.2.0 21

Figure 5: Preprocessing

MARF - v.0.2.0 22

Figure 6: Normalization of aihua5.wav from the testing set.

Figure 7: FFT of normalized aihua5.wav from the testing set.

MARF - v.0.2.0 23

Figure 8: Low-pass filter applied to aihua5.wav.

0.3.2.3 Low-Pass Filter

The low-pass filter has been realized on top of the FFT Filter, by setting up frequency response to zero
for frequencies past certain threshold chosen heuristically based on the window size where to cut off. We
filtered out all the frequencies past 2853 Hz.

Figure 8 presents FFT of a low-pass filtered graph.

0.3.2.4 High-Pass Filter

As the low-pass filter, the high-pass filter (e.g. is in Figure 9) has been realized on top of the FFT Filter,
in fact, it is the opposite to low-pass filter, and filters out frequencies before 2853 Hz. What would be very
useful to do is to test it along with high-frequency boost, but we’ve never managed to do so for 0.2.0.

0.3.2.5 Band-Pass Filter

Band-pass filter in MARF is yet another instance of an FFT Filter (Section 0.3.2.2), with the default
settings of the band of frequencies of [1000, 2853] Hz. See Figure 10.

0.3.2.6 High Frequency Boost

This filter was also implemented on top of the FFT filter to boost the high-end frequencies. The frequencies
boosted after approx. 1000 Hz by a factor of 5π, heuristically determined, and then re-normalized. See
Figure 11.

MARF - v.0.2.0 24

Figure 9: High-pass filter applied to aihua5.wav.

Figure 10: Band-pass filter applied to aihua5.wav.

MARF - v.0.2.0 25

Figure 11: High frequency boost filter applied to aihua5.wav.

0.3.2.7 Noise Removal

Any vocal sample taken in a less-than-perfect (which is always the case) environment will experience a
certain amount of room noise. Since background noise exhibits a certain frequency characteristic, if the
noise is loud enough it may inhibit good recognition of a voice when the voice is later tested in a different
environment. Therefore, it is necessary to remove as much environmental interference as possible.

To remove room noise, it is first necessary to get a sample of the room noise by itself. This sample,
usually at least 30 seconds long, should provide the general frequency characteristics of the noise when
subjected to FFT analysis. Using a technique similar to overlap-add FFT filtering, room noise can then
be removed from the vocal sample by simply subtracting the noise’s frequency characteristics from the
vocal sample in question.

That is, if S(x) is the sample, N(x) is the noise, and V (x) is the voice, all in the frequency domain,
then

S(x) = N(x) + V (x)

Therefore, it should be possible to isolate the voice:

V (x) = S(x)−N(x)

Unfortunately, time has not permitted us to implement this in practice yet.

MARF - v.0.2.0 26

0.3.3 Feature Extraction

This section outlines feature extraction methods of our project. First we present you with the API
and structure, followed by the description of the methods. The class diaram of this module set is in Figure
12.

0.3.3.1 The Hamming Window

In many DSP techniques, it is necessary to consider a smaller portion of the entire speech sample rather
than attempting to process the entire sample at once. The technique of cutting a sample into smaller
pieces to be considered individually is called “windowing”. The simplest kind of window to use is the
“rectangle”, which is simply an unmodified cut from the larger sample. Unfortunately, rectangular windows
can introduce errors, because near the edges of the window there will potentially be a sudden drop from
a high amplitude to nothing, which can produce false “pops” and “clicks” in the analysis.

A better way to window the sample is to slowly fade out toward the edges, by multiplying the points
in the window by a “window function”. If we take successive windows side by side, with the edges faded
out, we will distort our analysis because the sample has been modified by the window function. To avoid
this, it is necessary to overlap the windows so that all points in the sample will be considered equally.
Ideally, to avoid all distortion, the overlapped window functions should add up to a constant. This is
exactly what the Hamming window does. It is defined as:

x = 0.54− 0.46 · cos
(

2πn

l − 1

)
where x is the new sample amplitude, n is the index into the window, and l is the total length of the
window.

0.3.3.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) algorithm is used both for feature extraction and as the basis for the
filter algorithm used in preprocessing. Although a complete discussion of the FFT algorithm is beyond
the scope of this document, a short description of the implementation will be provided here.

Essentially the FFT is an optimized version of the Discrete Fourier Transform. It takes a window
of size 2k and returns a complex array of coefficients for the corresponding frequency curve. For feature
extraction, only the magnitudes of the complex values are used, while the FFT filter operates directly on
the complex results.

The implementation involves two steps: First, shuffling the input positions by a binary reversion
process, and then combining the results via a “butterfly” decimation in time to produce the final frequency
coefficients. The first step corresponds to breaking down the time-domain sample of size n into n frequency-
domain samples of size 1. The second step re-combines the n samples of size 1 into 1 n-sized frequency-
domain sample.

MARF - v.0.2.0 27

Figure 12: Feature Extraction

MARF - v.0.2.0 28

The code used in MARF has been translated from the C code provided in the book, “Numeric Recipes
in C”.

0.3.3.2.1 FFT Feature Extraction The frequency-domain view of a window of a time-domain sam-
ple gives us the frequency characteristics of that window. In feature identification, the frequency charac-
teristics of a voice can be considered as a list of “features” for that voice. If we combine all windows of a
vocal sample by taking the average between them, we can get the average frequency characteristics of the
sample. Subsequently, if we average the frequency characteristics for samples from the same speaker, we
are essentially finding the center of the cluster for the speaker’s samples. Once all speakers have their clus-
ter centers recorded in the training set, the speaker of an input sample should be identifiable by comparing
its frequency analysis with each cluster center by some classification method.

Since we are dealing with speech, greater accuracy should be attainable by comparing corresponding
phonemes with each other. That is, “th” in “the” should bear greater similarity to “th” in “this” than
will “the” and “this” when compared as a whole.

The only characteristic of the FFT to worry about is the window used as input. Using a normal
rectangular window can result in glitches in the frequency analysis because a sudden cutoff of a high
frequency may distort the results. Therefore it is necessary to apply a Hamming window to the input
sample, and to overlap the windows by half. Since the Hamming window adds up to a constant when
overlapped, no distortion is introduced.

When comparing phonemes, a window size of about 2 or 3 ms is appropriate, but when comparing
whole words, a window size of about 20 ms is more likely to be useful. A larger window size produces a
higher resolution in the frequency analysis.

0.3.3.3 Linear Predictive Coding (LPC)

This section presents implementation of the LPC Classification module.

One method of feature extraction used in the MARF project was Linear Predictive Coding (LPC)
analysis. It evaluates windowed sections of input speech waveforms and determines a set of coefficients
approximating the amplitude vs. frequency function. This approximation aims to replicate the results of
the Fast Fourier Transform yet only store a limited amount of information: that which is most valuable
to the analysis of speech.

0.3.3.3.1 Theory The LPC method is based on the formation of a spectral shaping filter, H(z), that,
when applied to a input excitation source, U(z), yields a speech sample similar to the initial signal. The
excitation source, U(z), is assumed to be a flat spectrum leaving all the useful information in H(z). The
model of shaping filter used in most LPC implementation is called an ”all-pole” model, and is as follows:

H(z) =
G(

1−
p∑

k=1

(akz
−k)

)

MARF - v.0.2.0 29

Where p is the number of poles used. A pole is a root of the denominator in the Laplace transform of
the input-to-output representation of the speech signal.

The coefficients ak are the final representation if the speech waveform. To obtain these coefficients,
the least-square autocorrelation method was used. This method requires the use of the autocorrelation of
a signal defined as:

R(k) =
n−1∑
m=k

(x(n) · x(n− k))

where x(n) is the windowed input signal.

In the LPC analysis, the error in the approximation is used to derive the algorithm. The error at

time n can be expressed in the following manner: e(n) = s(n)−
p∑

k=1

(ak · s(n− k)). Thusly, the complete

squared error of the spectral shaping filter H(z) is:

E =
∞∑

n=−∞

(
x(n)−

p∑
k=1

(ak · x(n− k))

)

To minimize the error, the partial derivative δE
δak

is taken for each k = 1..p, which yields p linear
equations of the form:

∞∑
n=−∞

(x(n− i) · x(n)) =
p∑

k=1

(ak ·
∞∑

n=−∞
(x(n− i) · x(n− k))

For i = 1..p. Which, using the autocorrelation function, is:

p∑
k=1

(ak ·R(i− k)) = R(i)

Solving these as a set of linear equations and observing that the matrix of autocorrelation values is a
Toeplitz matrix yields the following recursive algorithm for determining the LPC coefficients:

km =

(
R(m)−

m−1∑
k=1

(am−1(k)R(m− k))

)
Em−1

am(m) = km

am(k) = am−1(k)− km · am(m− k) for 1 ≤ k ≤ m− 1,

Em = (1− k2
m) · Em−1

.

This is the algorithm implemented in the MARF LPC module.

MARF - v.0.2.0 30

0.3.3.3.2 Usage for Feature Extraction The LPC coefficients were evaluated at each windowed
iteration, yielding a vector of coefficient of size p. These coefficients were averaged across the whole signal
to give a mean coefficient vector representing the utterance. Thus a p sized vector was used for training
and testing. The value of p chosen was based on tests given speed vs. accuracy. A p value of around 20
was observed to be accurate and computationally feasible.

0.3.3.4 Random Feature Extraction

By default given a window of size 256 samples, it picks at random a number from a Gaussian distribution,
and multiplies by the incoming sample frequencies. This all adds up and we have a feature vector at the
end. This should be the bottom line performance of all feature extraction methods. It can also be used
as a relatively fast testing module.

MARF - v.0.2.0 31

0.3.4 Classification

This section outlines classification methods of the MARF project. First, we present you with the API
and overall structure, followed by the description of the methods. Overall structure of the modules is in
Figure 13.

0.3.4.1 Chebyshev Distance

Chebyshev distance is used along with other distance classifiers for comparison. Chebyshev distance is
also known as a city-block or Manhattan distance. Here’s its mathematical representation:

d(x, y) =
n∑

k=1

(|xk − yk|)

where x and y are feature vectors of the same length n.

0.3.4.2 Euclidean Distance

The Euclidean Distance classifier uses an Euclidean distance equation to find the distance between two
feature vectors.

If A = (x1, x2) and B = (y1, y2) are two 2-dimensional vectors, then the distance between A and B

can be defined as the square root of the sum of the squares of their differences:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)
2

This equation can be generalized to n-dimensional vectors by simply adding terms under the square
root.

d(x, y) =
√

(xn − yn)2 + (xn−1 − yn−1)
2 + ... + (x1 − y1)

2

or

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

or

d(x, y) =
√

(x− y)T (x− y)

A cluster is chosen based on smallest distance to the feature vector in question.

MARF - v.0.2.0 32

Figure 13: Classification

MARF - v.0.2.0 33

0.3.4.3 Minkowski Distance

Minkowski distance measurement is a generalization of both Euclidean and Chebyshev distances.

d(x, y) =

(
n∑

k=1

(|xk − yk|)r

) 1
r

where r is a Minkowski factor. When r = 1, it becomes Chebyshev distance, and when r = 2, it is the
Euclidean one. x and y are feature vectors of the same length n.

0.3.4.4 Mahalanobis Distance

This distance classification is meant to be able to detect features that tend to vary together in the same
cluster if linear transformations are applied to them, so it becomes invariant from these transformations
unlike all the other, previously seen distance classifiers.

d(x, y) =
√

(x− y)C−1(x− y)T

where x and y are feature vectors of the same length n, and C is a covariance matrix, learnt during training
for co-related features.

In this release, namely 0.2.0, it’s not implemented yet, only with the covariance matrix being an
identity matrix, C = I, making Mahalanobis distance be the same as the Euclidean one. We plan to have
it fully implemented in the next release, when we decide how we go about matrix/vector operations in
MARF.

0.3.4.5 Artificial Neural Network

This section presents implementation of the Neural Network Classification module.

One method of classification used is an Artificial Neural Network. Such a network is meant to represent
the neuronal organization in organisms. It’s use as a classification method lies is in the training of the
network to output a certain value given a particular input.

0.3.4.5.1 Theory A neuron consists of a set of inputs with associated weights, a threshold, an acti-
vation function (f(x)) and an output value. The output value will propagate to further neurons (as input
values) in the case where the neuron is not part of the ”output” layer of the network. The relation of the
inputs to the activation function is as follows:

output←− f(in)

where in =
n∑

i=0

(wi · ai) − t, “vector” a is the input activations, “vector” w is the associated weights

and t is the threshold of the network. The following activation function was used:

sigmoid(x; c) = 1
(1+e−cx)

MARF - v.0.2.0 34

where c is a constant. The advantage of this function is that it is differentiable over the region
(−∞,+∞) and has derivative:

d(sigmoid(x;c))
dx = c · sigmoid(x; c) · (1− sigmoid(x; c))

The structure of the network used was a Feed-Forward Neural Network. This implies that the neurons
are organized in sets, representing layers, and that a neuron in layer j, has inputs from layer j − 1 and
output to layer j + 1 only. This structure facilitates the evaluation and the training of a network. For
instance, in the evaluation of a network on an input vector I, the output of neuron in the first layer is
calculated, followed by the second layer, and so on.

0.3.4.5.2 Training Training in a Feed-Forward Neural Network is done through the an algorithm
called Back-Propagation Learning. It is based on the error of the final result of the network. The error the
propagated backward throughout the network, based on the amount the neuron contributed to the error.
It is defined as follows:

wi,j ←− βwi,j + α · aj ·∆i

where

∆i = Erri · df
dx(ini)

for neuron i in the output layer

and

∆i = df
dt(ini)

·
n∑

j=0

(∆j) for neurons in other layers

The parameters α and β are used to avoid local minima in the training optimization process. They
weight the combination of the old weight with the addition of the new change. Usual values for these are
determined experimentally.

The Back-Propagation training method was used in conjunction with epoch training. Given a set of
training input vectors Tr, the Back-Propagation training is done on each run. However, the new weight
vectors for each neuron, “vector” w′, are stored and not used. After all the inputs in Tr have been trained,
the new weights are committed and a set of test input vectors Te, are run, and a mean error is calculated.
This mean error determines whether to continue epoch training or not.

0.3.4.5.3 Usage as a Classifier As a classifier, a Neural Network is used to map feature vectors to
speaker identifiers. The neurons in the input layer correspond to each feature in the feature vector. The
output of the network is the binary interpretation of the output layer. Therefore the Neural Network has
an input layer of size m, where m is the size of all feature vectors and the output layer has size d(log2(n))e,
where n is the maximum speaker identifier.

A network of this structure is trained with the set of input vectors corresponding to the set of training
samples for each speaker. The network is epoch trained to optimize the results. This fully trained network
is then used for classification in the recognition process.

MARF - v.0.2.0 35

0.3.4.6 Random Classification

That might sound strange, but we have a random classifier in MARF. This is more or less testing module
just to quickly test the PR pipeline. It picks an ID in the pseudo-random manner from the list of trained
IDs of subjects to classification. It also serves as a bottom-line of performance (i.e. recognition rate) for all
the other, slightly more sophisticated classification methods meaning performance of the aforementioned
methods must be better than that of the Random; otherwise, there is a problem.

MARF - v.0.2.0 36

Figure 14: GUI Package

0.4 GUI

Even though this section is entitled as GUI, we don’t really have any actual GUI yet (it’s planned
though, see TODO, 0.8.4). We do have a couple of things under the marf.gui package, which we do
occasionaly use and evetually they will expand to be a real GUI classes. This tiny package is in Figure 14.

0.4.1 Spectrogram

Sometimes it is useful to visualize the data we are playing with. One of the typical thing when deal-
ing with sounds, specifically voice, people are intrested in spectrograms of frequency distributions. The
Spectrogram class was designed to handle that and produce spectrograms from both FFT and LPC algo-
rithms and draw them. We did not manage to make it a true GUI component yet, but instead we made
it to dump the spectrograms into PPM-format image files to be looked at using some graphical package.
Two examples of such spectrograms are in the Appendix 0.8.1.

0.4.2 Wave Grapher

WaveGrapher is another class designed, as the name suggests, to draw the wave form of the incom-
ing/preprocessed signal. Well, it doen’t actually draw a thing, but dumps the sample points into a
tab-delimited text file to be loaded into some plotting software, such as gnuplot or Excel. We also use it
to produce graphs of the signal in the frequency domain istead of time domain. Examples of the graphs
of data obtained via this class are in the Preprocessing Section (0.3.2).

MARF - v.0.2.0 37

ID Name Training Samples Testing Samples

1 Serge 14 1
2 Ian 14 1
3 Steve 13 3
4 Jimmy 14 1
5 Dr. Suen 2 1
6 Margarita Mokhova 14 1
7 Alexei Mokhov 14 1
9 Graham Sinclair 12 2
10 Jihed Halimi 2 1
11 Madhumita Banerjee 3 1
13 Irina Dymova 3 1
14 Aihua Wu 14 1
15 Nick 9 1
16 Michelle Khalife 14 1
17 Shabana 7 1

Table 1: Speakers contributed their voice samples.

0.5 Sample Data and Experimentation

0.5.1 Sample Data

We have both female and male speakers, with age ranging from a college student to an university professor.
The table 1 has a list of people whp have contributed their voice samples for our project (with first four
being ourselves). We want to thank them once again for helping us out.

0.5.2 Comparison Setup

The main idea was to compare combinations (in MARF: configurations) of different methods and variations
within them in terms of recognition rate performance. That means that having several preprocessing
modules, several feature extraction modules, and several classification modules, we can (and did) try all
their possible combinations.

That includes:

1. Preprocessing: No-filtering (just normalization), low-pass, high-pass, band-pass, and high-frequency
boost filters.

2. Feature Extraction: FFT/LPC/Random algorithms comparison

MARF - v.0.2.0 38

3. Clasification: Distance classifiers, such as Chebyshev, Euclidean, Minkowski, and Mahalanobis dis-
tances, as well as Neural Network.

For this purpose we have written a SpeakerIdentApp, a command-line application for TI speaker
identification. We ran it for every possible configuration with the following script, namely testing.sh:

#!/usr/bin/tcsh -f

#!/site/bin/tcsh -f

#

Batch Processing of Training/Testing Samples

NOTE: Make take quite some time to execute

#

Copyright (C) 2002-2003 The MARF Development Group

#

$Header: /cvsroot/marf/apps/SpeakerIdentApp/testing.sh,v 1.19 2003/02/05 20:27:32 mokhov Exp $

#

#

Set environment variables, if needed

#

#setenv CLASSPATH ’.:../../marf/src/marf.jar’

#setenv EXTDIRS ’.:/pkg/j2sdk-1.3.1_01/jre/lib:G\:\\Programming\\Java\\jdk1.3.1_06\\jre\\lib\\ext’

#

Set flags to use in the batch execution

#

set java = ’java’

#set debug = ’-debug’

set debug = ’’

set graph = ’’

#set graph = ’-graph’

#set spectrogram = ’-spectrogram’

set spectrogram = ’’

if($1 == ’--reset’) then

echo "Resetting Stats..."

$java SpeakerIdentApp --reset

exit 0

endif

if($1 == ’--retrain’) then

echo "Training..."

Always reset stats before retraining the whole thing

$java SpeakerIdentApp --reset

foreach prep (-norm -boost -low -high -band)

foreach feat (-fft -lpc -randfe)

Here we specify which classification modules to use for

training. Since Neural Net wasn’t working the default

distance training was performed; now we need to distinguish them

MARF - v.0.2.0 39

here. NOTE: for distance classifiers it’s not important

which exactly it is, because the one of generic Distance is used.

Exception for this rule is Mahalanobis Distance, which needs

to learn its Covariance Matrix.

foreach class (-cheb -mah -randcl -nn)

echo "Config: $prep $feat $class $spectrogram $graph $debug"

$java SpeakerIdentApp --train training-samples $prep $feat $class $spectrogram $graph $debug

end

end

end

endif

echo "Testing..."

foreach file (testing-samples/*.wav)

foreach prep (-norm -boost -low -high -band)

foreach feat (-fft -lpc -randfe)

foreach class (-eucl -cheb -mink -mah -randcl -nn)

echo "=-="

echo "DOING FILE:"

echo $file

echo "Config: $prep $feat $class $spectrogram $graph $debug"

echo "==="

$java SpeakerIdentApp --ident $file $prep $feat $class $spectrogram $graph $debug

echo "---"

end

end

end

end

echo "Stats:"

$java SpeakerIdentApp --stats

echo "Testing Done"

exit 0

EOF

See the results section (0.6) for results analysis.

0.5.3 What Else Could/Should/Will Be Done

There is a lot more that we realistically could do, but due to lack of time, these things are not in yet. If
you would like to contribute, let us know.

MARF - v.0.2.0 40

0.5.3.1 Combination of Feature Extraction Methods

For example, assuming we use a combination of LPC coefficients and F0 estimation, we could compare the
results of different combinations of these, and discuss them later. Same with the Neural Nets (modifying
number of layers and number or neurons, etc.).

We could also do a 1024 FFT analysis and compare it against a 128 FFT analysis. (That is, the size
of the resulting feature vector would be 512 or 64 respectively). With LPC, one can specify the number
of coefficients you want, the more you have the more precise the analysis will be.

0.5.3.2 Entire Recognition Path

LPC module is used to generate a mean vector of LPC coefficients for the utterance. F0 is used to find
the average fundamental frequency of the utterance. The results are concatenated to form the output
vector, in a particular order. The classifier would take into account the weighting of the features: Neural
Network would do so implicitly if it benefits the speaker matching, and stochastic can be modified to give
more weight to the F0 or vice versa, depending on what we see best (i.e.: the covariance matrix in the
Mahalanobis distance (0.3.4.4)).

0.5.3.3 More Methods

Things like F0, Endpointing, Stochastic, and some other methods have not made to this release. More
detailed on this aspect, please refer to the TODO list in the Appendix.

MARF - v.0.2.0 41

0.6 Experementation Results

0.6.1 Notes

Before we get to numbers, few notes and observations first:

1. We’ve got more samples since the demo. The obvious: by increasing the number of samples our
results got better; with few exceptions, however. This can be explained by the diversity of the
recording equipment, a lot less than uniform number of samples per speaker, and absence of noise
and silence removal. All the samples were recorded in not the same environments. The results then
start averaging after awhile.

2. Another observation we made from our output, is that when the speaker is guessed incorrectly, quite
often the second guess is correct, so we included this in our results as if we were “guessing” right
from the second attempt.

3. FUN. Interesting note, that we also tried to take some samples of music bands, and feed it to to our
application along with the speakers, and application’s performance didn’t suffer, yet even improved
because the samples were treated in the same manner. The groups were not mentioned in the table,
so we name them here: Van Halen [8:1] and Red Hot Chili Peppers [10:1] (where numbers represent
[training:testing] samples used).

MARF - v.0.2.0 42

0.6.2 Configuration Explained

Configuration parameters were exracted from the command line which SpeakerIdentApp was invoked with.
They mean the following:

Usage:

java SpeakerIdentApp --train <samples-dir> [options] -- train mode

--ident <sample> [options] -- identification mode

--stats -- display stats

--reset -- reset stats

--version -- display version info

--help -- display this help and exit

Options (one or more of the following):

Preprocessing:

-norm - use just normalization, no filtering

-low - use low pass filter

-high - use high pass filter

-boost - use high frequency boost filter

-band - use bandpass filter

Feature Extraction:

-lpc - use LPC

-fft - use FFT

-randfe - use random feature extraction

Classification:

-nn - use Neural Network

-cheb - use Chebyshev Distance

-eucl - use Euclidean Distance

-mink - use Minkowski Distance

-randcl - use random classification

Misc:

-debug - include verbose debug output

-spectrogram - dump spectrogram image after feature extraction

-graph - dump wave graph before preprocessing and after feature extraction

<integer> - expected speaker ID

MARF - v.0.2.0 43

0.6.3 Consolidated Results

Our ultimate results 1 for all configurations we can have and samples we’ve got are in the Table 7. Looks
like our best results are with “-norm -fft -cheb”, “-norm -fft -eucl”, “-norm -fft -mah”, “-high -fft -eucl”,
“-high -fft -mah” and, “-high -fft -mink” with the top result being 80%.

1as of Mon Feb 10 05:06:31 EST 2003

MARF - v.0.2.0 44

Run # Guess Configuration GOOD BAD Recogniton Rate,%

1 1st -band -fft -cheb 7 13 35.0

2 1st -band -fft -eucl 9 11 45.0

3 1st -band -fft -mah 9 11 45.0

4 1st -band -fft -mink 6 14 30.0

5 1st -band -fft -randcl 2 18 10.0

6 1st -band -lpc -cheb 10 10 50.0

7 1st -band -lpc -eucl 10 10 50.0

8 1st -band -lpc -mah 10 10 50.0

9 1st -band -lpc -mink 9 11 45.0

10 1st -band -lpc -nn 0 20 0.0

11 1st -band -lpc -randcl 3 17 15.0

12 1st -band -randfe -cheb 2 18 10.0

13 1st -band -randfe -eucl 2 18 10.0

14 1st -band -randfe -mah 2 18 10.0

15 1st -band -randfe -mink 1 19 5.0

16 1st -band -randfe -randcl 1 19 5.0

17 1st -boost -fft -cheb 12 8 60.0

18 1st -boost -fft -eucl 13 7 65.0

19 1st -boost -fft -mah 13 7 65.0

20 1st -boost -fft -mink 12 8 60.0

21 1st -boost -fft -randcl 1 19 5.0

22 1st -boost -lpc -cheb 13 7 65.0

23 1st -boost -lpc -eucl 13 7 65.0

24 1st -boost -lpc -mah 13 7 65.0

25 1st -boost -lpc -mink 14 6 70.0

26 1st -boost -lpc -nn 0 20 0.0

27 1st -boost -lpc -randcl 1 19 5.0

28 1st -boost -randfe -cheb 5 15 25.0

29 1st -boost -randfe -eucl 5 15 25.0

Table 2: Consolidated results, Part 1.

MARF - v.0.2.0 45

Run # Guess Configuration GOOD BAD Recogniton Rate,%

30 1st -boost -randfe -mah 5 15 25.0

31 1st -boost -randfe -mink 4 16 20.0

32 1st -boost -randfe -randcl 2 18 10.0

33 1st -high -fft -cheb 15 5 75.0

34 1st -high -fft -eucl 16 4 80.0

35 1st -high -fft -mah 16 4 80.0

36 1st -high -fft -mink 16 4 80.0

37 1st -high -fft -randcl 0 20 0.0

38 1st -high -lpc -cheb 12 8 60.0

39 1st -high -lpc -eucl 11 9 55.00000000000001

40 1st -high -lpc -mah 11 9 55.00000000000001

41 1st -high -lpc -mink 9 11 45.0

42 1st -high -lpc -nn 0 20 0.0

43 1st -high -lpc -randcl 1 19 5.0

44 1st -high -randfe -cheb 3 17 15.0

45 1st -high -randfe -eucl 3 17 15.0

46 1st -high -randfe -mah 3 17 15.0

47 1st -high -randfe -mink 3 17 15.0

48 1st -high -randfe -randcl 1 19 5.0

49 1st -low -fft -cheb 15 5 75.0

50 1st -low -fft -eucl 14 6 70.0

51 1st -low -fft -mah 14 6 70.0

52 1st -low -fft -mink 13 7 65.0

53 1st -low -fft -randcl 0 20 0.0

54 1st -low -lpc -cheb 13 7 65.0

55 1st -low -lpc -eucl 11 9 55.00000000000001

56 1st -low -lpc -mah 11 9 55.00000000000001

57 1st -low -lpc -mink 11 9 55.00000000000001

58 1st -low -lpc -nn 0 19 0.0

59 1st -low -lpc -randcl 0 20 0.0

Table 3: Consolidated results, Part 2.

MARF - v.0.2.0 46

Run # Guess Configuration GOOD BAD Recogniton Rate,%

60 1st -low -randfe -cheb 5 15 25.0

61 1st -low -randfe -eucl 4 16 20.0

62 1st -low -randfe -mah 4 16 20.0

63 1st -low -randfe -mink 5 15 25.0

64 1st -low -randfe -randcl 2 18 10.0

65 1st -norm -fft -cheb 16 4 80.0

66 1st -norm -fft -eucl 16 4 80.0

67 1st -norm -fft -mah 16 4 80.0

68 1st -norm -fft -mink 15 5 75.0

69 1st -norm -fft -randcl 2 18 10.0

70 1st -norm -lpc -cheb 13 7 65.0

71 1st -norm -lpc -eucl 13 7 65.0

72 1st -norm -lpc -mah 13 7 65.0

73 1st -norm -lpc -mink 14 6 70.0

74 1st -norm -lpc -nn 1 19 5.0

75 1st -norm -lpc -randcl 1 19 5.0

76 1st -norm -randfe -cheb 5 15 25.0

77 1st -norm -randfe -eucl 6 14 30.0

78 1st -norm -randfe -mah 6 14 30.0

79 1st -norm -randfe -mink 5 15 25.0

80 1st -norm -randfe -randcl 1 19 5.0

81 2nd -band -fft -cheb 13 7 65.0

82 2nd -band -fft -eucl 13 7 65.0

83 2nd -band -fft -mah 13 7 65.0

84 2nd -band -fft -mink 10 10 50.0

85 2nd -band -fft -randcl 3 17 15.0

86 2nd -band -lpc -cheb 13 7 65.0

87 2nd -band -lpc -eucl 12 8 60.0

88 2nd -band -lpc -mah 12 8 60.0

89 2nd -band -lpc -mink 12 8 60.0

Table 4: Consolidated results, Part 3.

MARF - v.0.2.0 47

Run # Guess Configuration GOOD BAD Recogniton Rate,%

90 2nd -band -lpc -nn 0 20 0.0

91 2nd -band -lpc -randcl 3 17 15.0

92 2nd -band -randfe -cheb 3 17 15.0

93 2nd -band -randfe -eucl 3 17 15.0

94 2nd -band -randfe -mah 3 17 15.0

95 2nd -band -randfe -mink 4 16 20.0

96 2nd -band -randfe -randcl 1 19 5.0

97 2nd -boost -fft -cheb 15 5 75.0

98 2nd -boost -fft -eucl 15 5 75.0

99 2nd -boost -fft -mah 15 5 75.0

100 2nd -boost -fft -mink 17 3 85.0

101 2nd -boost -fft -randcl 2 18 10.0

102 2nd -boost -lpc -cheb 15 5 75.0

103 2nd -boost -lpc -eucl 15 5 75.0

104 2nd -boost -lpc -mah 15 5 75.0

105 2nd -boost -lpc -mink 16 4 80.0

106 2nd -boost -lpc -nn 0 20 0.0

107 2nd -boost -lpc -randcl 3 17 15.0

108 2nd -boost -randfe -cheb 6 14 30.0

109 2nd -boost -randfe -eucl 7 13 35.0

110 2nd -boost -randfe -mah 7 13 35.0

111 2nd -boost -randfe -mink 7 13 35.0

112 2nd -boost -randfe -randcl 2 18 10.0

113 2nd -high -fft -cheb 18 2 90.0

114 2nd -high -fft -eucl 18 2 90.0

115 2nd -high -fft -mah 18 2 90.0

116 2nd -high -fft -mink 17 3 85.0

117 2nd -high -fft -randcl 1 19 5.0

118 2nd -high -lpc -cheb 15 5 75.0

119 2nd -high -lpc -eucl 14 6 70.0

Table 5: Consolidated results, Part 4.

MARF - v.0.2.0 48

Run # Guess Configuration GOOD BAD Recogniton Rate,%

120 2nd -high -lpc -mah 14 6 70.0

121 2nd -high -lpc -mink 13 7 65.0

122 2nd -high -lpc -nn 0 20 0.0

123 2nd -high -lpc -randcl 2 18 10.0

124 2nd -high -randfe -cheb 4 16 20.0

125 2nd -high -randfe -eucl 3 17 15.0

126 2nd -high -randfe -mah 3 17 15.0

127 2nd -high -randfe -mink 4 16 20.0

128 2nd -high -randfe -randcl 2 18 10.0

129 2nd -low -fft -cheb 17 3 85.0

130 2nd -low -fft -eucl 17 3 85.0

131 2nd -low -fft -mah 17 3 85.0

132 2nd -low -fft -mink 17 3 85.0

133 2nd -low -fft -randcl 1 19 5.0

134 2nd -low -lpc -cheb 17 3 85.0

135 2nd -low -lpc -eucl 16 4 80.0

136 2nd -low -lpc -mah 16 4 80.0

137 2nd -low -lpc -mink 15 5 75.0

138 2nd -low -lpc -nn 0 19 0.0

139 2nd -low -lpc -randcl 0 20 0.0

140 2nd -low -randfe -cheb 7 13 35.0

141 2nd -low -randfe -eucl 7 13 35.0

142 2nd -low -randfe -mah 7 13 35.0

143 2nd -low -randfe -mink 7 13 35.0

144 2nd -low -randfe -randcl 4 16 20.0

145 2nd -norm -fft -cheb 18 2 90.0

146 2nd -norm -fft -eucl 18 2 90.0

147 2nd -norm -fft -mah 18 2 90.0

148 2nd -norm -fft -mink 17 3 85.0

149 2nd -norm -fft -randcl 5 15 25.0

Table 6: Consolidated results, Part 5.

MARF - v.0.2.0 49

Run # Guess Configuration GOOD BAD Recogniton Rate,%

150 2nd -norm -lpc -cheb 16 4 80.0

151 2nd -norm -lpc -eucl 15 5 75.0

152 2nd -norm -lpc -mah 15 5 75.0

153 2nd -norm -lpc -mink 17 3 85.0

154 2nd -norm -lpc -nn 1 19 5.0

155 2nd -norm -lpc -randcl 1 19 5.0

156 2nd -norm -randfe -cheb 8 12 40.0

157 2nd -norm -randfe -eucl 9 11 45.0

158 2nd -norm -randfe -mah 9 11 45.0

159 2nd -norm -randfe -mink 8 12 40.0

160 2nd -norm -randfe -randcl 2 18 10.0

Table 7: Consolidated results, Part 6.

MARF - v.0.2.0 50

0.7 Conclusions

So, our best configuration yielded 80% correctness of our work when identifying subjects. Having a
total of 15 speakers (well, and two music bands) that means 13-14 subjects identified correctly out of 17
per run.

The main reasons the recognition rate could be that low is due to ununiform sample taking, lack
of good preprocessing techniques, such as noise/silence removal, and lack of sophisticated classification
modules (e.g. Stochastic models).

Even though for commercial and University-level research standards 80% recognition rate is considered
to be very low as opposed to a required minimum of 95%-97% and above, we think it is still reasonably
well for a one-semester school project. That still involved a substantial amount of research and findings
considering our workload and lack of experience in the area.

We would like to thank Dr. Suen and Mr. Sadri for the course and help provided.

Bibliography

[1] O’Shaughnessy, Douglas. (2000), “Speech Communications”, IEEE Press. New Jersey, US.

[2] Sprenger, S. (1999), “The DFT â pied”, <http://www.dspdimension.com/html/dftapied.html>

[3] Ifeachor/Jervis (2002) “Digital Signal Processing”, Prentice Hall. New Jersey, US.

[4] William H. Press, et al. (1993), “Numerical Recipes in C”, 2nd edition, Cambridge University Press.
Cambridge, UK.

[5] Russell, S., Norvig, P. (1995), “Artificial Intelligence: A Modern Approach”, Prentice Hall. New
Jersey, US.

[6] Flanagan D. (1997), “Java in a Nutshell”, 2nd Edition, O’Reily & Associates, Inc.. CA, US, ISBN:
1-56592-262-X

[7] Sun Microsystems, Inc., “The Java Website”, <http://java.sun.com>

51

MARF - v.0.2.0 52

0.8 APPENDIX

0.8.1 Spectrogram Examples

As produced by the Spectrogram class.

Figure 15: LPC spectrogram obtained for ian15.wav

Figure 16: LPC spectrogram obtained for graham13.wav

0.8.2 MARF Source Code

You can download the code from <http://marf.sourceforge.net>, specifically:

• The latest unstable version: <http://marf.sourceforge.net/marf.tar.gz>

• Browse code and revision history online: <http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/marf/>

API documentation in the HTML format can be found in the documentation distribution, or for
the latest version please consult: <http://marf.sourceforge.net/api/>. If you want to participate
in developement, there is a developers version of the API: <http://marf.sourceforge.net/api-dev/>,
which includes all the private constructs into the docs as well.

MARF - v.0.2.0 53

0.8.3 SpeakerIdentApp and SpeakersIdentDb Source Code

0.8.3.1 SpeakerIdentApp.java

/*

* SpeakerIdentApp: Indentfies a speaker regardless what speaker says.

*

* $Header: /cvsroot/marf/apps/SpeakerIdentApp/SpeakerIdentApp.java,v 1.26 2003/02/08 16:50:16 mokhov Exp $

*/

import marf.*;

import marf.util.*;

import marf.Storage.*;

import java.io.*;

/**

* Class SpeakerIdentApp

* <p>Indentfies a speaker independently of text, based on the MARF framework</p>

*/

public class SpeakerIdentApp

{

/*

* Versionning

*/

public static final int MAJOR_VERSION = 0;

public static final int MINOR_VERSION = 2;

public static final int REVISION = 0;

public static void main(String argv[])

{

// Since new API was introduced in 0.2.0

validateVersions();

/*

* Database of speakers

*/

SpeakersIdentDb db = new SpeakersIdentDb("speakers.txt");

try

{

db.connect();

db.query();

/*

* If supplied in the command line,

* the system when classifying will output next

* to the guessed one

*/

int iExpectedID = -1;

/*

* Default MARF setup

*/

MARF.setPreprocessingMethod(MARF.DUMMY);

MARF - v.0.2.0 54

MARF.setFeatureExtractionMethod(MARF.FFT);

MARF.setClassificationMethod(MARF.EUCLIDEAN_DISTANCE);

MARF.setDumpSpectrogram(false);

MARF.setSampleFormat(MARF.WAV);

MARF.DEBUG = false;

// parse extra arguments

// XXX: maybe it’s time to move it to a sep. method

for(int i = 2; i < argv.length; i++)

{

try

{

// Preprocessing

if(argv[i].compareTo("-norm") == 0)

MARF.setPreprocessingMethod(MARF.DUMMY);

else if(argv[i].compareTo("-boost") == 0)

MARF.setPreprocessingMethod(MARF.HIGH_FREQUENCY_BOOST_FFT_FILTER);

else if(argv[i].compareTo("-high") == 0)

MARF.setPreprocessingMethod(MARF.HIGH_PASS_FFT_FILTER);

else if(argv[i].compareTo("-low") == 0)

MARF.setPreprocessingMethod(MARF.LOW_PASS_FFT_FILTER);

else if(argv[i].compareTo("-band") == 0)

MARF.setPreprocessingMethod(MARF.BANDPASS_FFT_FILTER);

// Feature Extraction

else if(argv[i].compareTo("-fft") == 0)

MARF.setFeatureExtractionMethod(MARF.FFT);

else if(argv[i].compareTo("-lpc") == 0)

MARF.setFeatureExtractionMethod(MARF.LPC);

else if(argv[i].compareTo("-randfe") == 0)

MARF.setFeatureExtractionMethod(MARF.RANDOM_FEATURE_EXTRACTION);

// Classification

else if(argv[i].compareTo("-nn") == 0)

{

MARF.setClassificationMethod(MARF.NEURAL_NETWORK);

ModuleParams m = new ModuleParams();

// Dump/Restore Format of the TrainingSet

m.addClassificationParam(new Integer(TrainingSet.DUMP_GZIP_BINARY));

// Training Constant

m.addClassificationParam(new Double(1.0));

// Epoch number

//m.addClassificationParam(new Integer(100));

MARF - v.0.2.0 55

m.addClassificationParam(new Integer(1000));

// Min. error

//m.addClassificationParam(new Double(0.01));

m.addClassificationParam(new Double(4.27));

MARF.setModuleParams(m);

}

else if(argv[i].compareTo("-eucl") == 0)

MARF.setClassificationMethod(MARF.EUCLIDEAN_DISTANCE);

else if(argv[i].compareTo("-cheb") == 0)

MARF.setClassificationMethod(MARF.CHEBYSHEV_DISTANCE);

else if(argv[i].compareTo("-mink") == 0)

{

MARF.setClassificationMethod(MARF.MINKOWSKI_DISTANCE);

ModuleParams m = new ModuleParams();

// Dump/Restore Format

m.addClassificationParam(new Integer(TrainingSet.DUMP_GZIP_BINARY));

// Minkowski Factor

m.addClassificationParam(new Double(6.0));

MARF.setModuleParams(m);

}

else if(argv[i].compareTo("-mah") == 0)

MARF.setClassificationMethod(MARF.MAHALANOBIS_DISTANCE);

else if(argv[i].compareTo("-randcl") == 0)

MARF.setClassificationMethod(MARF.RANDOM_CLASSIFICATION);

// Misc

else if(argv[i].compareTo("-spectrogram") == 0)

MARF.setDumpSpectrogram(true);

else if(argv[i].compareTo("-debug") == 0)

MARF.DEBUG = true;

else if(argv[i].compareTo("-graph") == 0)

MARF.setDumpWaveGraph(true);

else if(Integer.parseInt(argv[i]) > 0)

iExpectedID = Integer.parseInt(argv[i]);

}

catch(NumberFormatException e)

{

// Number format exception should be ignored

// XXX [SM]: Why?

MARF.debug("SpeakerIdentApp.main() - NumberFormatException: " + e.getMessage());

}

MARF - v.0.2.0 56

} // extra args

/*

* Identification

*/

if(argv[0].compareTo("--ident") == 0)

{

if(iExpectedID < 0)

iExpectedID = db.getIDByFilename(argv[1], false);

// Store config and error/sucesses for that config

String strConfig = "";

if(argv.length > 2) // Get config from the command line

for(int i = 2; i < argv.length; i++)

strConfig += argv[i] + " ";

else // query MARF for it’s current config

strConfig = MARF.getConfig();

MARF.setSampleFile(argv[1]);

MARF.recognize();

db.getName(MARF.queryResultID());

System.out.println(" Config: " + strConfig);

System.out.println(" Speaker’s ID: " + MARF.queryResultID());

System.out.println(" Speaker identified: " + db.getName(MARF.queryResultID()));

if(iExpectedID > 0)

{

// Second best

Result oResult = MARF.getResult();

System.out.println("Expected Speaker’s ID: " + iExpectedID);

System.out.println(" Expected Speaker: " + db.getName(iExpectedID));

System.out.println(" Second Best ID: " + oResult.getSecondClosestID());

System.out.println(" Second Best Name: " + db.getName(oResult.getSecondClosestID()));

db.restore();

{

// 1st match

db.addStats(strConfig, (MARF.queryResultID() == iExpectedID ? true : false));

// 2nd best: must be true if either 1st true or second true (or both :))

boolean bSecondBest =

MARF.queryResultID() == iExpectedID

||

oResult.getSecondClosestID() == iExpectedID;

db.addStats(strConfig, bSecondBest, true);

}

db.dump();

}

}

MARF - v.0.2.0 57

/*

* Training

*/

else if(argv[0].compareTo("--train") == 0)

{

try

{

File[] dir = new File(argv[1]).listFiles();

String strFileName;

// XXX: this loop has to be in MARF

for(int i = 0; i < dir.length; i++)

{

strFileName = dir[i].getPath();

if(strFileName.endsWith(".wav"))

{

MARF.setSampleFile(strFileName);

int id = db.getIDByFilename(strFileName, true);

if(id == -1)

System.out.println("No speaker found for \"" + strFileName + "\".");

else

{

MARF.setCurrentSubject(id);

MARF.train();

}

}

}

}

catch(NullPointerException e)

{

System.out.println("Folder \"" + argv[1] + "\" not found.");

System.exit(-1);

}

System.out.println("Done training on folder \"" + argv[1] + "\".");

}

/*

* Stats

*/

else if(argv[0].compareTo("--stats") == 0)

{

db.restore();

db.printStats();

}

/*

* Reset Stats

*/

else if(argv[0].compareTo("--reset") == 0)

{

db.resetStats();

System.out.println("SpeakerIdentApp: Statistics has been reset.");

MARF - v.0.2.0 58

}

/*

* Versionning

*/

else if(argv[0].compareTo("--version") == 0)

{

System.out.println("Text-Independent Speaker Identification Application, v." + getVersion());

System.out.println("Using MARF, v." + MARF.getVersion());

validateVersions();

}

/*

* Help

*/

else if(argv[0].compareTo("--help") == 0)

{

usage();

}

/*

* Invalid major option

*/

else

throw new Exception("Unrecognized option: " + argv[0]);

}

/*

* No arguments have been specified

*/

catch(ArrayIndexOutOfBoundsException e)

{

System.err.println(e.getMessage());

e.printStackTrace(System.err);

usage();

}

/*

* MARF-specific errors

*/

catch(MARFException e)

{

System.err.println(e.getMessage());

e.printStackTrace(System.err);

}

/*

* Invalid option and/or option argument

*/

catch(Exception e)

{

System.out.println(e.getMessage());

e.printStackTrace(System.err);

usage();

}

MARF - v.0.2.0 59

/*

* Regardless whatever happens, close the db connection.

*/

finally

{

try

{

MARF.debug("Closing DB connection...");

db.close();

}

catch(Exception e)

{

MARF.debug("Closing DB connection failed: " + e.getMessage());

e.printStackTrace(System.err);

System.exit(-1);

}

}

}

private static final void usage()

{

System.out.println

(

"Usage:\n" +

" java SpeakerIdentApp --train <samples-dir> [options] -- train mode\n" +

" --ident <sample> [options] -- identification mode\n" +

" --stats -- display stats\n" +

" --reset -- reset stats\n" +

" --version -- display version info\n" +

" --help -- display this help and exit\n\n" +

"Options (one or more of the following):\n\n" +

"Preprocessing:\n\n" +

" -norm - use just normalization, no filtering\n" +

" -low - use low pass filter\n" +

" -high - use high pass filter\n" +

" -boost - use high frequency boost filter\n" +

" -band - use bandpass filter\n" +

"\n" +

"Feature Extraction:\n\n" +

" -lpc - use LPC\n" +

" -fft - use FFT\n" +

" -randfe - use random feature extraction\n" +

"\n" +

"Classification:\n\n" +

" -nn - use Neural Network\n" +

" -cheb - use Chebyshev Distance\n" +

" -eucl - use Euclidean Distance\n" +

" -mink - use Minkowski Distance\n" +

" -randcl - use random classification\n" +

"\n" +

"Misc:\n\n" +

" -debug - include verbose debug output\n" +

MARF - v.0.2.0 60

" -spectrogram - dump spectrogram image after feature extraction\n" +

" -graph - dump wave graph before preprocessing and after feature extraction\n" +

" <integer> - expected speaker ID\n" +

"\n"

);

System.exit(0);

}

private static final String getVersion()

{

return MAJOR_VERSION + "." + MINOR_VERSION + "." + REVISION;

}

public static final int getIntVersion()

{

return MAJOR_VERSION * 100 + MINOR_VERSION * 10 + REVISION;

}

public static final void validateVersions()

{

if(MARF.getIntVersion() < (0 * 100 + 2 * 10 + 0))

{

System.out.println

(

"Your MARF version (" + MARF.getVersion() +

") is too old. This application requires 0.2.0 or above."

);

}

}

}

// EOF

0.8.3.2 SpeakersIdentDb.java

import marf.*;

import java.io.*;

import java.util.*;

import java.util.zip.*;

import java.awt.*;

/**

* Class SpeakersIdentDb

* Manages database of speakers on the app. level

*/

public class SpeakersIdentDb implements Serializable

{

/**

* DB filename

*/

private String strDbFile;

MARF - v.0.2.0 61

/**

* Hashes "config string" -> Vector(FirstMatchPoint(XSuccesses, YFailures), SecondMatchPoint(XSuccesses, YFailures))

*/

private Hashtable oStatsPerConfig = null;

/**

* A vector of vectors of speakers info pre-loded on connect()

*/

private Hashtable oDB = null;

/**

* Indicate whether we are connected or not

*/

boolean bConnected = false;

/**

* "Database connection"

*/

BufferedReader br = null;

/**

* @param pstrFileName filename of a CSV file with IDs and names of speakers

*/

public SpeakersIdentDb(String pstrFileName)

{

this.strDbFile = pstrFileName;

this.oDB = new Hashtable();

this.oStatsPerConfig = new Hashtable();

}

/**

* @param strFileName Name of a .wav file for which ID must be returned

* @return int ID

*/

public int getIDByFilename(String pstrFileName, boolean pbTraining) throws Exception

{

String str;

// Extract actual file name without preceeding path (if any)

if(pstrFileName.lastIndexOf(’/’) >= 0)

str = pstrFileName.substring(pstrFileName.lastIndexOf(’/’) + 1, pstrFileName.length());

else if(pstrFileName.lastIndexOf(’\\’) >= 0)

str = pstrFileName.substring(pstrFileName.lastIndexOf(’\\’) + 1, pstrFileName.length());

else

str = pstrFileName;

Enumeration oIDs = oDB.keys();

// Traverse all the info vectors looking for sample filename

while(oIDs.hasMoreElements())

{

Integer id = (Integer)oIDs.nextElement();

//System.out.println("File: " + pstrFileName + ", id = " + id.intValue());

Vector oSpeakerInfo = (Vector)oDB.get(id);

Vector oFilenames;

MARF - v.0.2.0 62

if(pbTraining == true)

oFilenames = (Vector)oSpeakerInfo.elementAt(1);

else

oFilenames = (Vector)oSpeakerInfo.elementAt(2);

// Start from 1 because 0 is speaker’s name

for(int i = 0; i < oFilenames.size(); i++)

{

String tmp = (String)oFilenames.elementAt(i);

if(tmp.compareTo(str) == 0)

return id.intValue();

}

}

return -1;

}

/**

* @param piID ID of a person in the DB to return a name for

* @return name string

* @exception Exception

*/

public final String getName(final int piID) throws Exception

{

//MARF.debug("getName() - ID = " + piID + ", db size: " + oDB.size());

String strName;

Vector oDBEntry = (Vector)oDB.get(new Integer(piID));

if(oDBEntry == null)

strName = "Unknown Speaker (" + piID + ")";

else

strName = (String)oDBEntry.elementAt(0);

return strName;

}

public void connect() throws Exception

{

// That’s where we should establish file linkage and keep it until closed

try

{

this.br = new BufferedReader(new FileReader(this.strDbFile));

this.bConnected = true;

}

catch(IOException e)

{

throw new Exception

(

"Error opening speaker DB: \"" + this.strDbFile + "\": " +

e.getMessage() + "."

);

}

}

MARF - v.0.2.0 63

public void query() throws Exception

{

// That’s where we should load db results into internal data structure

String tmp;

int id = -1;

try

{

tmp = br.readLine();

while(tmp != null)

{

StringTokenizer stk = new StringTokenizer(tmp, ",");

Vector oSpeakerInfo = new Vector();

// get ID

if(stk.hasMoreTokens())

id = Integer.parseInt(stk.nextToken());

// speaker’s name

if(stk.hasMoreTokens())

{

tmp = stk.nextToken();

oSpeakerInfo.add(tmp);

}

// training file names

Vector oTrainingFilenames = new Vector();

if(stk.hasMoreTokens())

{

StringTokenizer oSTK = new StringTokenizer(stk.nextToken(), "|");

while(oSTK.hasMoreTokens())

{

tmp = oSTK.nextToken();

oTrainingFilenames.add(tmp);

}

}

oSpeakerInfo.add(oTrainingFilenames);

// testing file names

Vector oTestingFilenames = new Vector();

if(stk.hasMoreTokens())

{

StringTokenizer oSTK = new StringTokenizer(stk.nextToken(), "|");

while(oSTK.hasMoreTokens())

{

tmp = oSTK.nextToken();

oTestingFilenames.add(tmp);

}

}

MARF - v.0.2.0 64

oSpeakerInfo.add(oTestingFilenames);

MARF.debug("Putting ID=" + id + " along with info vector of size " + oSpeakerInfo.size());

this.oDB.put(new Integer(id), oSpeakerInfo);

tmp = br.readLine();

}

}

catch (IOException e)

{

throw new Exception

(

"Error reading from speaker DB: \"" + this.strDbFile +

"\": " + e.getMessage() + "."

);

}

}

public void close() throws Exception

{

// Close file

if(bConnected == false)

throw new Exception("SpeakersIdentDb.close() - not connected");

try

{

this.br.close();

this.bConnected = false;

}

catch(IOException e)

{

throw new Exception(e.getMessage());

}

}

public void addStats(String pstrConfig, boolean pbSuccess)

{

addStats(pstrConfig, pbSuccess, false);

}

public void addStats(String pstrConfig, boolean pbSuccess, boolean pbSecondBest)

{

Vector oMatches = (Vector)oStatsPerConfig.get(pstrConfig);

Point oPoint = null;

if(oMatches == null)

{

oMatches = new Vector(2);

oMatches.add(new Point());

oMatches.add(new Point());

}

else

{

if(pbSecondBest == false)

oPoint = (Point)oMatches.elementAt(0); // Firts match

else

MARF - v.0.2.0 65

oPoint = (Point)oMatches.elementAt(1); // Second best match

}

int x = 0; // # of successes

int y = 0; // # of failures

if(oPoint == null) // Didn’t exist yet; create new

{

if(pbSuccess == true)

x = 1;

else

y = 1;

oPoint = new Point(x, y);

if(oPoint == null)

{

System.out.println("point null!!!!");

System.exit(-1);

}

if(oMatches == null)

{

System.out.println("matches null!!!!");

System.exit(-1);

}

if(oMatches.size() == 0)

{

System.out.println("matches 0!!!!");

System.exit(-1);

}

if(pbSecondBest == false)

oMatches.setElementAt(oPoint, 0);

else

oMatches.setElementAt(oPoint, 1);

oStatsPerConfig.put(pstrConfig, oMatches);

}

else // There is an entry for this config; update

{

if(pbSuccess == true)

oPoint.x++;

else

oPoint.y++;

}

}

public final void printStats() throws Exception

{

String[] astrResults = new String[oStatsPerConfig.size() * 2];

Enumeration oStatsEnum = oStatsPerConfig.keys();

int iResultNum = 0;

MARF - v.0.2.0 66

while(oStatsEnum.hasMoreElements())

{

String strConfig = (String)oStatsEnum.nextElement();

for(int i = 0; i < 2; i++)

{

Point oGoodBadPoint = (Point)((Vector)oStatsPerConfig.get(strConfig)).elementAt(i);

String strGuess = (i == 0) ? "1st" : "2nd";

astrResults[iResultNum++] =

strGuess + " " +

"CONFIG: " + strConfig +

", GOOD: " + oGoodBadPoint.x +

", BAD: " + oGoodBadPoint.y +

", %: " + ((double)oGoodBadPoint.x / (double)(oGoodBadPoint.x + oGoodBadPoint.y)) * 100;

}

}

Arrays.sort(astrResults);

for(int i = 0; i < astrResults.length; i++)

System.out.println(astrResults[i]);

}

public final void resetStats() throws IOException

{

oStatsPerConfig.clear();

dump();

}

public void dump() throws IOException

{

FileOutputStream fos = new FileOutputStream(this.strDbFile + ".stats");

GZIPOutputStream gzos = new GZIPOutputStream(fos);

ObjectOutputStream out = new ObjectOutputStream(gzos);

out.writeObject(this.oStatsPerConfig);

out.flush();

out.close();

}

public void restore() throws IOException

{

try

{

FileInputStream fis = new FileInputStream(this.strDbFile + ".stats");

GZIPInputStream gzis = new GZIPInputStream(fis);

ObjectInputStream in = new ObjectInputStream(gzis);

this.oStatsPerConfig = (Hashtable)in.readObject();

in.close();

}

catch(FileNotFoundException e)

{

System.out.println("NOTICE: File " + this.strDbFile + ".stats does not seem to exist. Creating a new one....");

resetStats();

}

MARF - v.0.2.0 67

catch(ClassNotFoundException e)

{

throw new IOException("SpeakerIdentDd.retore() - ClassNotFoundException: " + e.getMessage());

}

}

}

// EOF

MARF - v.0.2.0 68

0.8.4 TODO

MARF TODO/Wishlist

$Header: /cvsroot/marf/marf/TODO,v 1.36 2003/02/10 09:56:35 mokhov Exp $

THE APPS

- SpeakerIdentApp

- GUI

- Real Time recording (does it belong here?)

- Move dir. read from the app to MARF in training section {0.3.0}

- Enhance batch recognition (do not re-load training set per sample) {0.3.0}

- Add --batch-ident option {0.3.0}

- Enhance options with arguments, e.g. -fft=1024, -lpc=40, -lpc=40,256, keeping the existing defaults

- Add option: -data-dir=DIRNAME other than default to specify a dir where to store training sets and stuff

- Add -mah=r

- Add single file training option

- make binary/optimized distro

- Dump stats: -classic -latex -csv

- Improve on javadoc

- ChangeLog

* Sort the stats

* Add classification methods to training in testing.sh

- SpeechRecognition

- InstrumentIdentification

- LanguageIdentification

+- Fix TestNN

- Regression Tests?

- one script calls all the apps and compares new results vs. expected

* batch plan execution

THE BUILD SYSTEM

* global makefile in /marf

* fix doc’s global makefile

* Global Makefile for apps

(will descend to each dir and build all the apps.)

- Build and package distrubution

- MARF

- App

- Perhaps at some point we’d need make/project files for other Java IDEs, such as

- Sun Studio (Forte is dead)

- IBM Visual Age

? Visual J++

THE FRAMEWORK

MARF - v.0.2.0 69

- Preprocessing

* Move BandPassFilter and HighFrequencyBoost under FFTFilter package with CVS comments

* Tweak the filter values of HighPass and HighFrequencyBoost filters

- Make dump()/restore() to serialize filtered output {0.3.0}

- Implement

- Enable changing values of frequency boundaries and coeffs. in filters by an app.

- Endpoint {1.0.0}

* Bandpass filter {0.2.0}

- Highpass Filter with High Frequency Boost together {0.?.0}

- "Compressor" [steve]

- Methods: {1.0.0}

- removeNoise()

- removeSilence()

- cropAudio()

- Feature Extraction

- Make modules to dump their

features for future use by NNet and maybe others {0.3.0}

- Implement {1.0.0}

- F0

- Cepstral

- Segmentation

* RandomFeatureExtraction {0.2.0}

- Classification

- Implement

* Minkowski’s Distance {0.2.0}

+---- Mahalanobis Distance {0.3.0}

- Stochastic [serge] {1.0.0}

- Gaussian Mixture Models

- Hidden Markov Models {1.0.0}

* RandomClassification {0.2.0}

- Fix and document NNet {0.*.0}

* dump()/retore() {0.2.0}

- add % of correct/incorrect expected to train() {0.3.0}

- ArrayList ---> Vector, because ArrayList is NOT thread-safe {0.3.0}

+- Epoch training

- Distance Classifiers

- make distance() throw an exception maybe?

* Move under Distance package

- Speech package

- Recognition

- Dictionaries

- Generation

- Stats {0.3.0}

- Move stats collection from the app and other places to StatsCollector

- Timing

- Batch progress report

- Algos

- Algorithm decoupling to marf.algos or marf.algorithms or ... {0.4.0}

- marf.algos.Search

MARF - v.0.2.0 70

- marf.util.DataStructures -- Node / Graph --- to be used by the networks and state machines

- move hamming() from FeatureExtraction

- GUI {0.5.0}

- Make them actual GUI components to be included into App

- Spectrogram

* Fix filename stuff (module_dirname to module_filename)

- WaveGrapher

- Fix WaveGrapher

- Sometimes dumps files of 0 length

- Make it actually ouput PPM or smth like that (configurable?)

- Too huge files for samp output.

- Have LPC understand it

- Config tool

- Web interface?

- MARF.java

- Concurrent use of modules of the same type (e.g. FFT and F0)

- impl

? streamedRecognition()

+- train()

- Add single file training

- Inter-module compatibility (i.e. specific modules can only work

with specific modules and not others)

- Module Compatibility Matrix

- Module integer and String IDs

+- enhance error reporting

- Server Part {2.0.0}

- Exceptions {0.3.0}

- StorageException

? Have all marf exceptions inherit from util.MARFException

- marf.util

- Move NeuralNetowork.indent()

- Move MARF.debug() --> marf.util.debug.debugln()

- marf.util.debug.debug()

? marf.util.upgrade

- Storage

- ModuleParams: have Hastables instead of Vectors

to allow params in any order and in any number.

- Keep all data files under marf.data dir, like training sets, XML, etc {0.3.0}

- DUMP_BINARY (w/o compression) {0.3.0}

- Move DUMP_* flags up to StorageManager?

+- Revise TrainingSet stuff

- TrainingSet

- upgradability {?.?.?}

- convertability: bin.gzip <-> bin <-> csv

- FeatureSet {0.3.0}

- Clean up

- CVS:

- Remove --x permissions introduced from windoze in files:

- /marf/doc/src/tex/sampleloading.tex

- /marf/doc/src/graphics/*.png

- /marf/doc/src/graphics/arch/*.png

MARF - v.0.2.0 71

- /marf/doc/src/graphics/fft_spectrograms/*.ppm

- /marf/doc/src/graphics/lpc_spectrograms/*.ppm

- /marf/doc/arch.mdl

- /marf/src/marf/Classification/Distance/EuclideanDistance.java

- /marf/src/marf/Preprocessing/FFTFilter.java

- /apps/SpeakerIdentApp/SpeakerIdentApp.jpx

- /apps/SpeakerIdentApp/testing-samples/*.wav

- /apps/SpeakerIdentApp/testing-samples/*.wav

- /apps/TestFilters/TestFilters.*

- Rename /marf/doc/sgml to /marf/doc/styles

- Remove /marf/doc/styles/ref

* Move disatance classifiers with CVS log

to Distance

* remove uneeded attics and corresponding dirs

* "Ceptral"

* Bogus samples

THE CODE

- Define coding standards

- Propagate them throughout the code

THE DOCS

- docs [s]

- autosync history and the report

- ChangeLog

* report components [serge]

- Arch Update [serge]

+- gfx model (rr)

- gui: add StorageManager

* update doc

* newer images

* better doc format and formulas

- index

- Results:

- Add modules params used, like r=6 in Minkowski, FFT input 1024, etc

* web site

* CVS

* autoupdate from CVS

EOF

