
Modular Audio Recognition Framework v.0.3.0.6 (0.3.0 final)

and its

Applications

The MARF Research and Development Group

Montréal, Québec, Canada

Sun Dec 9 12:09:44 EST 2007

Contents

1 Introduction 4

1.1 What is MARF? . 4

1.1.1 Purpose . 4

1.1.2 Why Java? . 4

1.1.3 Terminology and Notation . 5

1.2 Authors, Contact, and Copyright Information . 5

1.2.1 COPYRIGHT . 5

1.2.2 Authors . 5

1.3 Brief History of MARF . 6

1.3.1 Developers Emeritus . 6

1.3.2 Contributors . 6

1.3.3 Current Status and Past Releases . 7

1.4 MARF Source Code . 7

1.4.1 Project Source and Location . 7

1.4.2 Formatting . 7

1.4.3 Coding and Naming Conventions . 8

1.5 Versioning . 9

2 Build System 10

3 MARF Installation Instructions 11

3.1 Requirements . 11

3.2 MARF Installation . 11

3.3 Downloading the Latest Jar Files . 12

3.4 Building From Sources . 12

3.4.1 UNIXen . 13
i

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual ii

3.4.2 Windows . 13

3.4.3 Cygwin / under Windows . 14

3.5 Configuration . 14

3.5.1 Environment Variables . 14

3.5.1.1 CLASSPATH . 14

3.5.1.2 EXTDIRS . 14

3.5.2 Web Applications . 14

3.5.2.1 Tomcat . 14

3.5.3 JUnit . 14

3.6 MARF Upgrade . 15

3.7 Regression Tests . 15

3.8 Uninstall . 15

3.9 Cleaning . 15

4 MARF Architecture 16

4.1 Application Point of View . 16

4.2 Packages and Physical Layout . 19

4.3 Current Limitations . 24

5 Methodology 25

5.1 Storage . 25

5.1.1 Speaker Database . 25

5.1.2 Storing Features, Training, and Classification Data 25

5.1.3 Assorted Training Notes . 27

5.1.3.1 Clusters Defined . 27

5.1.4 File Location . 28

5.1.5 Sample and Feature Sizes . 28

5.1.6 Parameter Passing . 28

5.1.7 Result . 28

5.1.8 Sample Format . 29

5.1.9 Sample Loading Process . 29

5.2 Assorted File Format Notes . 32

5.3 Preprocessing . 34

5.3.1 “Raw Meat” . 34

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual iii

5.3.1.1 Description . 34

5.3.1.2 Implementation Summary . 34

5.3.2 Normalization . 34

5.3.3 Noise Removal . 34

5.3.4 Silence Removal . 36

5.3.5 Endpointing . 37

5.3.6 FFT Filter . 37

5.3.7 Low-Pass Filter . 38

5.3.8 High-Pass Filter . 38

5.3.9 Band-Pass Filter . 38

5.3.10 High Frequency Boost . 38

5.3.11 High-Pass High Frequency Boost Filter . 40

5.4 Feature Extraction . 42

5.4.1 Hamming Window . 42

5.4.1.1 Implementation . 42

5.4.1.2 Theory . 42

5.4.2 Fast Fourier Transform (FFT) . 44

5.4.2.1 FFT Feature Extraction . 44

5.4.3 Linear Predictive Coding (LPC) . 45

5.4.3.1 Theory . 45

5.4.3.2 Usage for Feature Extraction . 46

5.4.4 F0: The Fundamental Frequency . 46

5.4.5 Min/Max Amplitudes . 47

5.4.5.1 Description . 47

5.4.6 Feature Extraction Aggregation . 47

5.4.6.1 Description . 47

5.4.6.2 Implementation . 47

5.4.7 Random Feature Extraction . 48

5.5 Classification . 49

5.5.1 Chebyshev Distance . 49

5.5.2 Euclidean Distance . 49

5.5.3 Minkowski Distance . 51

5.5.4 Mahalanobis Distance . 51

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual iv

5.5.4.1 Summary . 51

5.5.4.2 Theory . 51

5.5.5 Diff Distance . 51

5.5.5.1 Summary . 52

5.5.5.2 Theory . 52

5.5.6 Artificial Neural Network . 52

5.5.6.1 Theory . 52

5.5.6.2 Training . 53

5.5.6.3 Usage as a Classifier . 53

5.5.7 Random Classification . 54

6 Statistics Processing 55

6.1 Statistics Collection . 55

6.2 Statistical Estimators and Smoothing . 55

7 Natural Language Processing (NLP) 56

7.1 Zipf’s Law . 56

7.2 Statistical N-gram Models . 56

7.3 Probabilistic Parsing . 57

7.4 Collocations . 57

7.5 Stemming . 57

8 GUI 58

8.1 Spectrogram . 58

8.2 Wave Grapher . 60

9 Sample Data and Experimentation 61

9.1 Sample Data . 61

9.2 Comparison Setup . 61

9.3 What Else Could/Should/Will Be Done . 65

9.3.1 Combination of Feature Extraction Methods . 65

9.3.2 Entire Recognition Path . 65

9.3.3 More Methods . 65

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual v

10 Experimentation Results 66

10.1 Notes . 66

10.2 SpeakerIdentApp’s Options . 67

10.3 Consolidated Results . 69

11 Applications 87

11.1 MARF Research Applications . 87

11.1.1 SpeakerIdentApp - Text-Independent Speaker Identification Application 87

11.1.2 Zipf’s Law Application . 87

11.1.2.1 Mini User Manual . 88

11.1.2.2 Experiments . 90

11.1.2.3 Results . 90

11.1.2.4 Conclusions . 94

11.1.3 Language Identification Application . 94

11.1.3.1 The Program . 94

11.1.3.2 Hypotheses . 97

11.1.3.3 Initial Experiments Setup . 98

11.1.3.4 Methodology . 100

11.1.3.5 Difficulties Encountered . 100

11.1.3.6 Experiments . 101

11.1.3.7 Training . 103

11.1.3.8 Results . 104

11.1.3.9 Conclusions . 106

11.1.3.10 Mini User Manual . 106

11.1.3.11 List of Files . 108

11.1.3.12 Classification Results . 110

11.1.4 CYK Probabilistic Parsing with ProbabilisticParsingApp 126

11.1.4.1 Introduction . 126

11.1.4.2 The Program . 126

11.1.4.3 Methodology . 128

11.1.4.4 Results and Conclusions . 133

11.1.4.5 Mini User Manual . 137

11.1.4.6 Results . 140

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual vi

11.1.4.7 Code . 148

11.2 MARF Testing Applications . 150

11.2.1 TestFilters . 150

11.2.2 TestLPC . 152

11.2.3 TestFFT . 153

11.2.4 TestWaveLoader . 154

11.2.5 TestLoaders . 155

11.2.6 MathTestApp . 157

11.2.7 TestPlugin . 158

11.2.8 TestNN . 159

11.3 External Applications . 160

11.3.1 GIPSY . 160

11.3.2 ENCSAssetsDesktop . 160

11.3.3 ENCSAssets . 160

11.3.4 ENCSAssetsCron . 161

12 Conclusions 162

12.1 Review of Results . 162

12.2 Acknowledgments . 162

Bibliography 163

A Spectrogram Examples 166

B MARF Source Code 167

C The CVS Repository 168

C.1 Getting The Source Via Anonymous CVS . 168

D SpeakerIdentApp and SpeakersIdentDb Source Code 170

D.1 SpeakerIdentApp.java . 170

D.2 SpeakersIdentDb.java . 189

E TODO 200

List of Figures

4.1 Overall Architecture . 17

4.2 The Core Pipeline Sequence Diagram . 18

4.3 The Core Pipeline Data Flow . 19

4.4 MARF Java Packages . 20

5.1 Storage . 26

5.2 Preprocessing . 35

5.3 Normalization of aihua5.wav from the testing set. 36

5.4 FFT of normalized aihua5.wav from the testing set. 38

5.5 Low-pass filter applied to aihua5.wav. 39

5.6 High-pass filter applied to aihua5.wav. 39

5.7 Band-pass filter applied to aihua5.wav. 40

5.8 High frequency boost filter applied to aihua5.wav. 41

5.9 Feature Extraction Class Diagram . 43

5.10 Classification . 50

8.1 GUI Package . 59

11.1 Zipf’s Law for the “Greifenstein” corpus with the default setup. 91

11.2 Zipf’s Law for the “How to Speak and Write Correctly” corpus with the default setup. . . . 91

11.3 Zipf’s Law for my 5.6 Mb INBOX with the default setup. 92

11.4 Zipf’s Law for the white paper “The United States Needs a Scalable Shared-Memory Mul-
tiprocessor, But Might Not Get One!” with the default setup. 92

11.5 Zipf’s Law for the “Ulysses” corpus with the default setup. 93

11.6 Zipf’s Law for the “ZipfLaw.java” program itself with the default setup. 93

11.7 Zipf’s Law for the “Greifenstein” corpus with the extreme setup. 94

11.8 Zipf’s Law for the “How to Speak and Write Correctly” corpus with the extreme setup. . . 95
1

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 2

11.9 Zipf’s Law for my 5.6 Mb INBOX with the extreme setup. 95

11.10Zipf’s Law for the white paper “The United States Needs a Scalable Shared-Memory Mul-
tiprocessor, But Might Not Get One! with the extreme setup 96

11.11Zipf’s Law for the “Ulysses” corpus with the extreme setup. 96

11.12Zipf’s Law for the “ZipfLaw.java” program itself with the extreme setup. 97

11.13Sample sentences in various languages used for testing. Was used in “Bag-of-Languages”
experiments. 102

11.14Subset of the sample sentences in languages with Latin base. 102

11.15Subset of the sample sentences in languages with non-Latin base. 103

11.16Subset of the sample statements in programming languages. 103

11.17Grammar File Format . 127

11.18Grammar File Example . 128

11.19Original Basic Grammar . 129

11.20Extended Grammar . 129

11.21Input sentences for the Basic and Extended Grammars . 130

11.22Requirements’ sentences used as a parsed “corpus” . 131

11.23Realistic Grammar . 132

A.1 LPC spectrogram obtained for ian15.wav . 166

A.2 LPC spectrogram obtained for graham13.wav . 166

List of Tables

9.1 Speakers contributed their voice samples. 62

10.1 Consolidated results, Part 1. 70

10.2 Consolidated results, Part 2. 71

10.3 Consolidated results, Part 3. 72

10.4 Consolidated results, Part 4. 73

10.5 Consolidated results, Part 5. 74

10.6 Consolidated results, Part 6. 75

10.7 Consolidated results, Part 7. 76

10.8 Consolidated results, Part 8. 77

10.9 Consolidated results, Part 9. 78

10.10Consolidated results, Part 10. 79

10.11Consolidated results, Part 11. 80

10.12Consolidated results, Part 12. 81

10.13Consolidated results, Part 13. 82

10.14Consolidated results, Part 14. 83

10.15Consolidated results, Part 15. 84

10.16Consolidated results, Part 16. 85

10.17Consolidated results, Part 17. 86

10.18Consolidated results, Part 18. 86

3

Chapter 1

Introduction

Revision : 1.22

1.1 What is MARF?

MARF stands for Modular Audio Recognition Framework. It contains a collection of algorithms for Sound,
Speech, and Natural Language Processing arranged into an uniform framework to facilitate addition of
new algorithms for preprocessing, feature extraction, classification, parsing, etc. implemented in Java.
MARF is also a research platform for various performance metrics of the implemented algorithms.

1.1.1 Purpose

Our main goal is to build a general open-source framework to allow developers in the audio-recognition
industry (be it speech, voice, sound, etc.) to choose and apply various methods, contrast and compare
them, and use them in their applications. As a proof of concept, a user frontend application for Text-
Independent (TI) Speaker Identification has been created on top of the framework (the SpeakerIdentApp

program). A variety of testing applications and applications that show how to use various aspects of
MARF are also present. A new recent addition is some (highly) experimental NLP support, which is also
included in MARF as of 0.3.0-devel-20050606 (0.3.0.2). For more information on applications that employ
MARF see Chapter 11.

1.1.2 Why Java?

We have chosen to implement our project using the Java programming language. This choice is justified
by the binary portability of the Java applications as well as facilitating memory management tasks and
other issues, so we can concentrate more on the algorithms instead. Java also provides us with built-in
types and data-structures to manage collections (build, sort, store/retrieve) efficiently [Fla97].

4

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 5

1.1.3 Terminology and Notation

Revision : 1.4

The term “MARF” will be to refer to the software that accompanies this documentation. An appli-
cation programmer could be anyone who is using, or wants to use, any part of the MARF system. A
MARF developer is a core member of MARF who is hacking away the MARF system.

1.2 Authors, Contact, and Copyright Information

1.2.1 COPYRIGHT

Revision : 1.12

MARF is Copyright c© 2002 - 2007 by the MARF Research and Development Group and is distributed
under the terms of the BSD-style license below.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL CONCORDIA UNIVERSITY OR THE AUTHORS BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOC-
UMENTATION, EVEN IF CONCORDIA UNIVERSITY OR THE AUTHORS HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

CONCORDIA UNIVERSITY AND THE AUTHORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
ON AN “AS-IS” BASIS, AND CONCORDIA UNIVERSITY AND THE AUTHORS HAVE NO OBLI-
GATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFI-
CATIONS.

1.2.2 Authors

Authors Emeritus, in alphabetical order:

• Ian Clément, iclement@users.sourceforge.net

• Serguei Mokhov, mokhov@cs.concordia.ca, a.k.a Serge

• Dimitrios Nicolacopoulos, pwrslave@users.sourceforge.net, a.k.a Jimmy

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 6

• Stephen Sinclair, radarsat1@users.sourceforge.net, a.k.a. Steve, radarsat1

Contributors:

• Shuxin Fan, fshuxin@gmail.com, a.k.a Susan

Current maintainers:

• Serguei Mokhov, mokhov@cs.concordia.ca

If you have some suggestions, contributions to make, or for bug reports, don’t hesitate to contact us :-) For
MARF-related issues please contact us at marf-devel@lists.sf.net. Please report bugs to marf-bugs@

lists.sf.net.

1.3 Brief History of MARF

Revision : 1.13

The MARF project was initiated in September 26, 2002 by four students of Concordia University,
Montréal, Canada as their course project for Pattern Recognition under guidance of Dr. C.Y. Suen. This
included Ian Clément, Stephen Sinclair, Jimmy Nicolacopoulos, and Serguei Mokhov.

1.3.1 Developers Emeritus

• Ian’s primary contributions were the LPC and Neural Network algorithms support with the Spectrogram
dump.

• Steve has done an extensive research and implementation of the FFT algorithm for feature extraction
and filtering and Euclidean Distance with the WaveGrapher class.

• Jimmy was focused on implementation of the WAVE file format loader and other storage issues.

• Serguei designed the entire MARF framework and architecture, originally implemented general dis-
tance classifier and its Chebyshev, Minkowski, and Mahalanobis incarnations along with normaliza-
tion of the sample data. Serguei designed the Exceptions Framework of MARF and was involved
into the integration of all the modules and testing applications to use MARF.

1.3.2 Contributors

• Shuxin ‘Susan’ Fan contributed to development and maintenance of some test applications (e.g.
TestFilters) and initial adoption of the JUnit framework [GB04] within MARF. She has also fi-
nalized some utility modules (e.g. marf.util.Arrays) till completion and performed MARF code
auditing and “inventory”. Shuxin has also added NetBeans project files to the build system of MARF.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 7

1.3.3 Current Status and Past Releases

Now it’s a project on its own, being maintained and developed as we have some spare time for it. When the
course was over, Serguei Mokhov is the primary maintainer of the project. He rewrote Storage support
and polished all of MARF during two years and added various utility modules and NLP support and
implementation of new algorithms and applications. Serguei maintains this manual, the web site and most
of the sample database collection. He also made all the releases of the project as follows:

• 0.3.0-devel-20060226 (0.3.0.5), Sunday, February 26, 2006

• 0.3.0-devel-20050817 (0.3.0.4), Wednesday, August 17, 2005

• 0.3.0-devel-20050730 (0.3.0.3), Saturday, July 30, 2005

• 0.3.0-devel-20050606 (0.3.0.2), Monday, June 6, 2005

• 0.3.0-devel-20040614 (0.3.0.1), Monday, June 14, 2004

• 0.2.1, Monday, February 17, 2003

• 0.2.0, Monday, February 10, 2003

• 0.1.2, December 17, 2002 - Final Project Deliverable

• 0.1.1, December 8, 2002 - Demo

The project is currently geared towards completion planned TODO items on MARF and its applications.

1.4 MARF Source Code

Revision : 1.8

1.4.1 Project Source and Location

Our project since the its inception has always been an open-source project. All releases including the
most current one should most of the time be accessible via <http://marf.sourceforge.net> provided
by SourceForge.net. We have a complete API documentation as well as this manual and all the sources
available to download through this web page.

1.4.2 Formatting

Source code formatting uses a 4 column tab spacing, currently with tabs preserved (i.e. tabs are not
expanded to spaces).

For Emacs, add the following (or something similar) to your ~/.emacs initialization file:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 8

;; check for files with a path containing "marf"

(setq auto-mode-alist

(cons ’("\\(marf\\).*\\.java\\’" . marf-java-mode)

auto-mode-alist))

(setq auto-mode-alist

(cons ’("\\(marf\\).*\\.java\\’" . marf-java-mode)

auto-mode-alist))

(defun marf-java-mode ()

;; sets up formatting for MARF Java code

(interactive)

(java-mode)

(setq-default tab-width 4)

(java-set-style "bsd") ; set java-basic-offset to 4, etc.

(setq indent-tabs-mode t)) ; keep tabs for indentation

For vim, your ~/.vimrc or equivalent file should contain the following:

set tabstop=4

or equivalently from within vim, try

:set ts=4

The text browsing tools more and less can be invoked as

more -x4

less -x4

1.4.3 Coding and Naming Conventions

For now, please see http://marf.sf.net/coding.html.

TODO

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 9

1.5 Versioning

This section attempts to clarify versioning scheme employed by the MARF project for stable and develop-
ment releases.

In the 0.3.0 series a four digit version number was introduced like 0.3.0.1 or 0.3.0.2 and so on. The first
digit indicates a major version. This typically indicates a significant coverage of implementations of major
milestones and improvements, testing and quality validation and verification to justify a major release.
The minor version has to do with some smaller milestones achieved throughout the development cycles.
It is a bit subjective of what the minor and major version bumps are, but the TODO list in Appendix E
sets some tentative milestones to be completed at each minor or major versions. The revision is the third
digit is typically applied to stable releases if there are a number of critical bug fixes in the minor release,
it’s revision is bumped. The last digit represents the minor revision of the code release. This is typically
used throughout development releases to make the code available sooner for testing. This notion was
first introduced in 0.3.0 to count sort of increments in MARF development, which included bug fixes from
the past increment and some chunk of new material. Any bump of major, minor versions, or revision,
resets the minor revision back to zero. In the 0.3.0-devel release series these minor revisions were publicly
displayed as dates (e.g. 0.3.0-devel-20050817) on which that particular release was made.

All version as of 0.3.0 can be programmatically queried for and validated against. In 0.3.0.5, a new
Version class was introduced to encapsulate all versioning information and some validation of it to be
used by the applications.

• the major version can be obtained from marf.MARF.MAJOR VERSION and marf.Version.MAJOR VERSION

where as of 0.3.0.5 the former is an alias of the latter

• the minor version can be obtained from marf.MARF.MINOR VERSION and marf.Version.MINOR VERSION

where as of 0.3.0.5 the former is an alias of the latter

• the revision can be obtained from marf.MARF.REVISION and marf.Version.REVISION where as of
0.3.0.5 the former is an alias of the latter

• the minor revision can be obtained from marf.MARF.MINOR REVISION and marf.Version.MINOR REVISION

where as of 0.3.0.5 the former is an alias of the latter

The marf.Version class provides some API to validate the version by the application and report
mismatches for convenience. See the API reference for details. One can also query a full marf.jar or
marf-debug.jar release for version where all four components are displayed by typing:

java -jar marf.jar --version

Chapter 2

Build System

Revision : 1.1

• Makefiles

• Eclipse

• NetBeans

• JBuilder

TODO

10

Chapter 3

MARF Installation Instructions

Revision : 1.11

TODO: automatic sync with the INSTALL file.

3.1 Requirements

In general, any modern platform should be able to run MARF provided a Java Virtual machine (JRE
1.4 and above) is installed on it. The following software packages are required for building MARF from
sources:

• You need a Java compiler. Recent versions of javac are recommended. You will need at least JDK
1.4 installed as JDKs lower than that are no longer supported (a patch can be made however if there
is really a need for it). Additionally, you would need javadoc and jar (also a part of a JDK) if you
want to build the appropriate API documentation and the .jar files.

• On Linux and UNIX the GNU make [SMSP00] is required; other make programs will not work. GNU
make is often installed under the name gmake; on some systems the GNU make is the default tool
with the name make. This document will always refer to it by the name of “make”. To see which
make version you are running, type make -v.

• If you plan to run unit tests of MARF or use the marf-debug-*.jar release, then you will also need
the JUnit [GB04] framework’s jar somewhere in your CLASSPATH.

3.2 MARF Installation

There are several ways to “install” MARF.

• Download the latest marf-<ver>.jar

• Build it from sources
11

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 12

– UNIXen

– Windows

3.3 Downloading the Latest Jar Files

Just go to http://marf.sf.net, and download an appropriate marf-<ver>.jar from there. To install it,
put the downloaded .jar file(s) somewhere from within the reach of your CLASSPATH or Java extensions
directory, EXTDIRS. Et voila, since now on you can try to write some mini mind-blowing apps based on
MARF. You can also get some demo applications, such as SpeakerIdentApp from the same exact web site
to try out. This “install” is “platform-independent”.

As of MARF 0.3.0.5, there are several .jar files being released. Their number may increase based on
the demand. The different jars contain various subsets of MARF’s code in addition to the full and complete
code set that was always released in the past. The below is the description of the currently released jars:

• marf-<ver>.jar contains a complete set of MARF’s code excluding JUnit tests and debug infor-
mation, optimized.

• marf-debug-<ver>.jar contains a complete set of MARF’s code including JUnit tests and debug
information.

• marf-util-<ver>.jar contains a subset of MARF’s code corresponding primarily to the contents
of the marf.util package, optimized. This binary release is useful for apps which rely only on the
quite comprehensive set of general-purpose utility modules and nothing else. This jar is quite small
in size.

• marf-storage-<ver>.jar contains a subset of MARF’s code corresponding primarily to the con-
tents of the marf.Storage and some of the marf.util packages, optimized. This binary release is
useful for apps which rely only on the set of general-purpose utility and storage modules.

• marf-math-<ver>.jar contains a subset of MARF’s code corresponding primarily to the contents
of the marf.math and some of the marf.util packages, optimized. This binary release is useful for
apps which rely only on the set of general-purpose utility and math modules.

• marf-utilimathstor-<ver>.jar contains a subset of MARF’s code corresponding primarily to the
contents of the marf.util, marf.math, marf.Stats, and marf.Storage packages, optimized. This
binary release is useful for apps which rely only on the set of general-purpose modules from these
packages.

3.4 Building From Sources

You can grab the latest tarball of the current CVS, or pre-packaged -src release and compile it yourself
producing the .jar file, which you will need to install as described in the Section 3.3. The MARF sources
can be obtained from http://marf.sf.net. Extract:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 13

tar xvfz marf-src-<ver>.tar.gz

or

tar xvfj marf-src-<ver>.tar.bz2

This will create a directory marf-<ver> under the current directory with the MARF sources. Change
into that directory for the rest of the installation procedure.

3.4.1 UNIXen

We went with the makefile build approach. You will need GNU make (sometimes called ‘gmake’) to use it.
Assuming you have unpacked the sources, ‘cd’ to src and type:

make

This will compile and build marf-<ver>.jar in the current directory. (Remember to use GNU make.)
The last line displayed should be:

(-: MARF build has been successful :-)

To install MARF enter:

make install

This will install the .jar file(s) in the pre-determined place in the /usr/lib/marf directory.

make apidoc

This will compile general API javadoc pages in ../../api.

make apidoc-dev

This will compile developer’s API javadoc pages in ../../api-dev. Both APIs can be compiled at once
by using make api. Of course, you can compile w/o the makefile and use javac, jar, and javadoc directly
if you really want to.

3.4.2 Windows

We also used JBuilder [Bor03] from version 5 through to 2005, so there is a project file marf.jpx in this
directory. If you have JBuilder you can use this project file to build marf.jar. There are also Eclipse
[c+04] and NetBeans [Mic04] project files rooted at .project and .classpath for Eclipse that you can
import and build.xml and nbproject/*.* for NetBeans. Otherwise, you are stuck with javac/java/jar
command-line tools for the moment.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 14

3.4.3 Cygwin / under Windows

Follow pretty much the same steps as for UNIXen build above. You might need to hack Makefiles or a
corresponding environment variable to support “;” directory separator and quoting instead of “:”.

3.5 Configuration

Typically, MARF does not really need much more configuration tweaking for itself other than having a JDK
or a JRE installed to run it. The applications that use MARF should however be able to find marf.jar

by either setting the CLASSPATH environment variable to point where the jar is or mention it explicitly
on the command line (or otherwise JVM argument) with the -cp or -classpath options.

3.5.1 Environment Variables

3.5.1.1 CLASSPATH

Similarly to a commonly-used PATH variable, CLASSPATH tells where to find .class or .jar files if they
are not present in the standard, known to the JVM default directories. This is a colon-separated (“:”) for
Linux/Windows and semicolon-separated (“;”) for Windows/Cygwin list of directories with .class files
or explicitly mentioned .jar, .war, or .zip archives containing .class files.

MARF itself does not depend on any non-default classes or Java archives, so it requires no CLASSPATH
by itself (except when used with unit testing with JUnit [GB04], the junit.jar must be somewhere in
CLASSPATH). However, applications wishing to use MARF should point their CLASSPATH to where find
it unless it is in one of the default known to the JVM places.

3.5.1.2 EXTDIRS

This variable typically lists a set of directories for Java extensions where to find them. If you didn’t place
a pointer in your CLASSPATH, you can place it in your EXTDIRS instead.

3.5.2 Web Applications

3.5.2.1 Tomcat

If for some reason you decide to use one of the MARF’s jars in a web app, the web app servlet/JSP
container such as Tomcat [Fou05] is capable of setting the CLASSPATH itself as long as the jar(s) are in
one of the shared/lib or webapp/<your application here>/WEB-INF/lib directories.

3.5.3 JUnit

If you intend to run unit tests or use marf-debug*.jar JUnit [GB04] has to be “visible” to MARF and
the apps through CLASSPATH.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 15

3.6 MARF Upgrade

Normally, an upgrade would simply mean just yanking old .jar out, and plugging the new one in, UNLESS
you depend on certain parts of MARF’s experimental/legacy API.

It is important to note that MARF’s API is still stabilizing, especially for the newer modules (e.g.
NLP). Even older modules still get affected as the MARF is still flexible in that. Thus, the API changes do
in fact happen every release insofar, for the better (not always incompatible). This, however, also means
that the serialized version of the Serializable classes also change, so the corresponding data needs to
be retrained until an upgrade utility is available. Therefore, please check the versions, ChangeLog, class
revisions, and talk to us if you are unsure of what can affect you. A great deal of effort went into versioning
each public class and interface of MARF, which you can check by running:

java -jar marf.jar --verbose

To ask about more detailed changes if they are unclear from the ChangeLog, please write to us to
marf-devel@lists.sf.net or post a question in one of our forums at:

https://sourceforge.net/forum/?group_id=63118

Each release of MARF also supplies the Javadoc API comments, so you can and should consult those too.
The bleeding edge API is located at:

http://marf.sourceforge.net/api/

3.7 Regression Tests

If you want to test the newly built MARF before you deploy it, you can run the regression tests. The
regression tests are a test suite to verify that MARF runs on your platform in the way the developers
expected it to. For now to do so the option is to run manually tests located in the marf.junit package as
well as executing all the Test* applications described later on in the Applications chapter. A Regression

testing application to do the comprehensive testing and grouping the other test applications as well as the
JUnit tests. This application is still under development as of 0.3.0.5.

3.8 Uninstall

Simply remove the pertinent marf*.jar file(s).

3.9 Cleaning

After the installation you can make room by removing the built files from the source tree with the command
make clean.

Chapter 4

MARF Architecture

Revision : 1.29

Before we begin, you should understand the basic MARF system architecture. Understanding how the
parts of MARF interact will make the follow up sections somewhat clearer. This document presents archi-
tecture of the MARF system, including the layout of the physical directory structure, and Java packages.

Let’s take a look at the general MARF structure in Figure 4.1. The MARF class is the central “server”
and configuration “placeholder”, which contains the major methods – the core pipeline – a typical pattern
recognition process. The figure presents basic abstract modules of the architecture. When a developer
needs to add or use a module, they derive from the generic ones.

The core pipeline sequence diagram from an application up until the very end result is presented
in Figure 4.2. It includes all major participants as well as basic operations. The participants are the
modules responsible for a typical general pattern recognition pipeline. A conceptual data-flow diagram of
the pipeline is in Figure 4.3. The grey areas indicate stub modules that are yet to be implemented.

Consequently, the framework has the mentioned basic modules, as well as some additional entities to
manage storage and serialization of the input/output data.

4.1 Application Point of View

An application, using the framework, has to choose the concrete configuration and submodules for pre-
processing, feature extraction, and classification stages. There is an API the application may use defined
by each module or it can use them through the MARF.

There are two phases in MARF’s usage by an application:

• Training, i.e. train()

• Recognition, i.e. recognize()

Training is performed on a virgin MARF installation to get some training data in. Recognition is an
actual identification process of a sample against previously stored patterns during training.

16

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 17

Figure 4.1: Overall Architecture

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 18

Figure 4.2: The Core Pipeline Sequence Diagram

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 19

Figure 4.3: The Core Pipeline Data Flow

4.2 Packages and Physical Layout

The Java package structure is in Figure 4.4. The following is the basic structure of MARF:

marf.*

MARF.java - The MARF Server

Supports Training and Recognition mode

and keeps all the configuration settings.

marf.Preprocessing.* - The Preprocessing Package

/marf/Preprocessing/

Preprocessing.java - Abstract Preprocessing Module, has to be subclassed

PreprocessingExceotion.java

/Endpoint/*.java - Endpoint Filter as implementation of Preprocessing

/Dummy/

Dummy.java - Normalization only

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 20

Figure 4.4: MARF Java Packages

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 21

Raw.java - no preprocessing

/FFTFilter/

FFTFilter.java

LowPassFilter.java

HighPassFilter.java

BandpassFilter.java - Band-pass Filter as implementation of Preprocessing

HighFrequencyBoost.java

marf.FeatureExtraction.* - The Feature Extraction Package

/marf/FeatureExtraction/

FeatureExtraction.java

/FFT/FFT.java - FFT implementation of Preprocessing

/LPC/LPC.java - LPC implementation of Preprocessing

/MinMaxAmplitudes/MinMaxAmplitudes.java

/Cepstral/*.java

/Segmentation/*.java

/F0/*.java

marf.Classification.* - The Classification Package

/marf/Classification/

Classification.java

ClassificationException.java

/NeuralNetwork/

NeuralNetwork.java

Neuron.java

Layer.java

/Stochastic/*.java

/Markov/*.java

/Distance/

Distance.java

EuclideanDistance.java

ChebyshevDistance.java

MinkowskiDistance.java

MahalonobisDistance.java

DiffDistance.java

marf.Storage.* - The Physical Storage Management Interface

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 22

/marf/Storage/

Sample.java

ModuleParams.java

TrainingSet.java

FeatureSet.java

Cluster.java

Result.java

ResultSet.java

IStorageManager.java - Interface to be implemented by the above modules

StorageManager.java - The most common implementation of IStorageManager

ISampleLoader.java - All loaders implement this

SampleLoader.java - Should know how to load different sample format

/Loaders/*.* - WAV, MP3, ULAW, etc.

IDatabase.java

Database.java

marf.Stats.* - The Statistics Package meant to collect various types of stats.

/marf/Stats/

StatsCollector.java - Time took, noise removed, patterns stored, modules available, etc.

Ngram.java

Observation.java

ProbabilityTable.java

StatisticalEstimators

StatisticalObject.java

WordStats.java

/StatisticalEstimators/

GLI.java

KatzBackoff.java

MLE.java

SLI.java

StatisticalEstimator.java

/Smoothing/

AddDelta.java

AddOne.java

GoodTuring.java

Smoothing.java

WittenBell.java

marf.gui.* - GUI to the graphs and configuration

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 23

/marf/gui/

Spectrogram.java

SpectrogramPanel.java

WaveGrapher.java

WaveGrapherPanel.java

/util/

BorderPanel.java

ColoredStatusPanel.java

SmartSizablePanel.java

marf.nlp.* - most of the NLP-related modules

/marf/nlp/

Collocations/

Parsing/

Stemming/

util/

marf.math.* - math-related algorithms are here

/marf/math/

Algorithms.java

MathException.java

Matrix.java

Vector.java

marf.util.* - important utility modules

/marf/util/

Arrays.java

BaseThread.java

ByteUtils.java

Debug.java

ExpandedThreadGroup.java

FreeVector.java

InvalidSampleFormatException.java

Logger.java

MARFException.java

Matrix.java

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 24

NotImplementedException.java

OptionProcessor.java

SortComparator.java

/comparators/

FrequencyComparator.java

RankComparator.java

ResultComparator.java

4.3 Current Limitations

Our current pipeline is maybe somewhat too rigid. That is, there’s no way to specify more than one
preprocessing to process the same sample in one pass (as of 0.3.0.2 the preprocessing modules can be
chained, however, e.g. one filter followed by another in a preprocessing pipeline).

Also, the pipeline often assumes that the whole sample is loaded before doing anything with it, instead
of sending parts of the sample a bit at a time. Perhaps this simplifies things, but it won’t allow us to deal
with large samples at the moment. However, it’s not a problem for our framework and the application
because our samples are small enough and memory is cheap. Additionally, we have streaming support
already in the WAVLoader and some modules support it, but the final conversion to streaming did not
happen yet.

MARF provides only limited support for inter-module dependency. It is possible to pass module-
specific arguments, but problems like number of parameters mismatch between feature extraction and
classification, and so on are not tracked. There is also one instance of ModuleParams that exists in MARF

for now limiting combination of non-default feature extraction modules.

Chapter 5

Methodology

Revision : 1.11

This section presents what methods and algorithms were implemented and used in this project. We
overview storage issues first, then preprocessing methods followed by feature extraction, and ended by
classification.

5.1 Storage

Revision : 1.19

Figure 5.1 presents basic Storage modules and their API.

5.1.1 Speaker Database

We store specific speakers in a comma-separated (CSV) file, speakers.txt within the application. It has
the following format:

<id:int>,<name:string>,<training-samples:list>,<testing-samples:list>

Sample lists are defined as follows:

<*-sample-list> := filename1.wav|filename2.wav|...

5.1.2 Storing Features, Training, and Classification Data

We defined a standard StorageManager interface for the modules to use. That’s part of the StorageManager
interface which each module will override because each a module has to know how to serialize itself, but
the applications using MARF should not care. Thus, this StorageManager is a base class with abstract
methods dump() and restore(). These methods would generalize the model’s serialization, in the sense
that they are somehow “read” and “written”.

25

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 26

Figure 5.1: Storage

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 27

We have to store data we used for training for later use in the classification process. For this we pass
FFT (Figure 5.4.2) and LPC (Figure 5.4.3) feature vectors through the TrainingSet/TrainingSample
class pair, which, as a result, store mean vectors (clusters) for our training models.

In the Neural Network we use XML. The only reason XML and text files have been suggested is to
allow us to easily modify values in a text editor and verify the data visually.

In the Neural Network classification, we are using one net for all the speakers. We had thought that
one net for each speaker would be ideal, but then we’ll lose too much discrimination power. But doing
this means that the net will need complete re-training for each new training utterance (or group thereof).

We have a training/testing script that lists the location of all the wave files to be trained along with
the identification of the speaker - testing.sh.

5.1.3 Assorted Training Notes

Revision : 1.6

For training we are using sets of feature vectors created by FFT or LPC and passing them to the
NeuralNetwork in the form of a cluster, or rather probabilistic “cluster”. With this, there are some issues:

1. Mapping. We have to have a record of speakers and IDs for these speakers. This can be the same
for NeuralNetwork and Stochastic methods so long as the NeuralNetwork will return the proper
number and the “clusters” in the Stochastic module have proper labeling.

2. Feature vector generation. I think the best way to do this is for each application using MARF to
specify a feature file or directory which will contain lines/files with the following info:

[a1, a2, ... , an] : <speaker id>

Retraining for a new speaker would involve two phases 1) appending the features to the file/dir, then
2) re-training the models. The Classification modules will be aware of the scheme and re-train
on all data required.

5.1.3.1 Clusters Defined

Given a set of feature vectors in n-dimensional space, if we want these to represent m “items” (in our
case, speakers), we can make groupings of these vectors with a center point ci (ie: m center points which
will then represent the “items”). Suen discussed an iterative algorithm to find the optimal groupings (or
clusters). Anyway, I don’t believe that Suen’s clustering stuff is at all useful, as we will know, through
info from training, which speaker is associated with the feature vector and can create the “clusters” with
that information.

So for NeuralNetwork: no clusters, just regular training. So for Stochastic: Clusters (kind of). I
believe that we need to represent a Gaussian curve with a mean vector and a co-variance matrix. This will
be created from the set of feature vectors for the speaker. But again, we know who it is so the Optimal
Clustering business is useless.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 28

5.1.4 File Location

We decided to keep all the data and intermediate files in the same directory or subdirectories of that of
the application.

• marf.Storage.TrainingSet.* - represent training sets (global clusters) used in training with differ-
ent preprocessing and feature extraction methods; they can either be gzipped binary (.bin) or CSV
text (.csv).

• speakers.txt.stats - binary statistics file.

• marf.Classification.NeuralNetwork.*.xml - XML file representing a trained Neural Net for all
the speakers in the database.

• training-samples/ - directory with WAV files for training.

• testing-samples/ - directory with WAV files for testing.

5.1.5 Sample and Feature Sizes

Wave files are read and outputted as an array of data points that represents the waveform of the signal.

Different methods will have different feature vector sizes. It depends on what kind of precision one de-
sires. In the case of FFT, a 1024 FFT will result in 512 features, being an array of “doubles” corresponding
to the frequency range.

[O’S00] said about using 3 ms for phoneme analysis and something like one second for general voice
analysis. At 8 kHz, 1024 samples represents 128 ms, this might be a good compromise.

5.1.6 Parameter Passing

A generic ModuleParams container class has been created to for an application to be able to pass module-
specific parameters when specifying model files, training data, amount of LPC coefficients, FFT window
size, logging/stats files, etc.

5.1.7 Result

When classification is over, its result should be stored somehow for further retrieval by the application.
We have defined the Result object to carry out this task. It contains ID of the subject identified as well
as some additional statistics (such as second closest speaker and distances from other speakers, etc.)

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 29

5.1.8 Sample Format

Revision : 1.20

The sample format used for our samples was the following:

• Audio Format: PCM signed (WAV)

• Sample Rate: 8000 Hz

• Audio Sample Size: 16 bit

• Channels: 1 (mono)

• Duration: from about 7 to 20 seconds

All training and testing samples were recorded through an external sound recording program (MS
Sound Recorder) using a standard microphone. Each sample was saved as a WAV file with the above
properties and stored in the appropriate folders where they would be loaded from within the main appli-
cation. The PCM audio format (which stands for Pulse Code Modulation) refers to the digital encoding of
the audio sample contained in the file and is the format used for WAV files. In a PCM encoding, an analog
signal is represented as a sequence of amplitude values. The range of the amplitude value is given by the
audio sample size which represents the number of bits that a PCM value consists of. In our case, the audio
sample size is 16-bit which means that that a PCM value can range from 0 to 65536. Since we are using
PCM-signed format, this gives an amplitude range between −32768 and 32768. That is, the amplitude
values of each recorded sample can vary within this range. Also, this sample size gives a greater range
and thus provides better accuracy in representing an audio signal then using a sample size of 8-bit which
limited to a range of (−128, 128). Therefore, a 16-bit audio sample size was used for our experiments in
order to provide the best possible results. The sampling rate refers to the number of amplitude values
taken per second during audio digitization. According to the Nyquist theorem, this rate must be at least
twice the maximum rate (frequency) of the analog signal that we wish to digitize ([IJ02]). Otherwise, the
signal cannot be properly regenerated in digitized form. Since we are using an 8 kHz sampling rate, this
means that actual analog frequency of each sample is limited to 4 kHz. However, this limitation does not
pose a hindrance since the difference in sound quality is negligible ([O’S00]). The number of channels refers
to the output of the sound (1 for mono and 2 for stereo – left and right speakers). For our experiment, a
single channel format was used to avoid complexity during the sample loading process.

5.1.9 Sample Loading Process

To read audio information from a saved voice sample, a special sample-loading component had to be
implemented in order to load a sample into an internal data structure for further processing. For this,
certain sound libraries (javax.sound.sampled) were provided from the Java programming language which
enabled us to stream the audio data from the sample file. However once the data was captured, it had
to be converted into readable amplitude values since the library routines only provide PCM values of

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 30

the sample. This required the need to implement special routines to convert raw PCM values to actual
amplitude values (see SampleLoader class in the Storage package).

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 31

The following pseudo-code represents the algorithm used to convert the PCM values into real amplitude
values ([Mic05]):

function readAmplitudeValues(Double Array : audioData)

{

Integer: MSB, LSB,

index = 0;

Byte Array: AudioBuffer[audioData.length * 2];

read audio data from Audio stream into AudioBuffer;

while(not reached the end of stream OR index not equal to audioData.length)

{

if(Audio data representation is BigEndian)

{

// First byte is MSB (high order)

MSB = audioBuffer[2 * index];

// Second byte is LSB (low order)

LSB = audioBuffer[2 * index + 1];

}

else

{

// Vice-versa...

LSB = audioBuffer[2 * index];

MSB = audioBuffer[2 * index + 1];

}

// Merge high-order and low-order byte to form a 16-bit double value.

// Values are divided by maximum range

audioData[index] = (merge of MSB and LSB) / 32768;

}

}

This function reads PCM values from a sample stream into a byte array that has twice the length of
audioData; the array which will hold the converted amplitude values (since sample size is 16-bit). Once
the PCM values are read into audioBuffer, the high and low order bytes that make up the amplitude
value are extracted according to the type of representation defined in the sample’s audio format. If the
data representation is big endian, the high order byte of each PCM value is located at every even-numbered
position in audioBuffer. That is, the high order byte of the first PCM value is found at position 0, 2 for

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 32

the second value, 4 for the third and so forth. Similarly, the low order byte of each PCM value is located
at every odd-numbered position (1, 3, 5, etc.). In other words, if the data representation is big endian,
the bytes of each PCM code are read from left to right in the audioBuffer. If the data representation is
not big endian, then high and low order bytes are inversed. That is, the high order byte for the first PCM
value in the array will be at position 1 and the low order byte will be at position 0 (read right to left).
Once the high and low order bytes are properly extracted, the two bytes can be merged to form a 16-bit
double value. This value is then scaled down (divide by 32768) to represent an amplitude within a unit
range (−1, 1). The resulting value is stored into the audioData array, which will be passed to the calling
routine once all the available audio data is entered into the array. An additional routine was also required
to write audio data from an array into wave file. This routine involved the inverse of reading audio data
from a sample file stream. More specifically, the amplitude values inside an array are converted back to
PCM codes and are stored inside an array of bytes (used to create new audio stream). The following
illustrates how this works:

public void writePCMValues(Double Array: audioData)

{

Integer: word = 0,

index = 0;

Byte Array: audioBytes[(number of ampl. values in audioData) * 2];

while(index not equal to (number of ampl. values in audioData * 2))

{

word = (audioData[index] * 32768);

extract high order byte and place it in appropriate position in audioBytes;

extract low order byte and place it in appropriate position in audioBytes;

}

create new audio stream from audioBytes;

}

5.2 Assorted File Format Notes

Revision : 1.4

We decided to stick to Mono-8000Hz-16bit WAV files. 8-bit might be okay too, but we could retain
more precision with 16-bit files. 8000Hz is supposed to be all you need to contain all frequencies of the
vocal spectrum (according to Nyquist anyways...). If we use 44.1 kHz we’ll just be wasting space and
computation time.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 33

There are also MP3 and ULAW and other file format loaders stubs which are unimplemented as of
this version of MARF.

Also: I was just thinking I think I may have made a bit of a mistake downsampling to 8000Hz... I
was saying that the voice ranges to about 8000Hz so that’s all we should need for the samples, but then
I realized that if you have an 8000Hz sample, it actually only represents 4000Hz, which would account
for the difference I noticed.. but maybe we should be using 16KHz samples. On the other hand, even at
4KHz the voice is still perfectly distinguishable...

I tried the WaveLoader with one of the samples provided by Stephen (jimmy1.wav naturally!) and
got some nice results! I graphed the PCM obtained from the getaudioData() function and noticed quite a
difference from the PCM graph obtained with my “test.wav”. With “test.wav”, I was getting unexpected
results as the graph (“rawpcm.xls”) didn’t resemble any wave form. This lead me to believe that I needed
to convert the data on order to represent it in wave form (done in the “getWaveform()” function). But
after having tested the routine with “jimmy1.wav”, I got a beautiful wave-like graph with just the PCM
data which makes more sense since PCM represents amplitude values! The reason for this is that my
“test.wav” sample was actually 8-bit mono (less info.) rather than 16-bit mono as with Stephen’s samples.
So basically, we don’t need to do any “conversion” if we use 16-bit mono samples and we can scrap the
“getWaveform()” function. I will come up with a “Wave” class sometime this week which will take care of
loading wave files and windowing audio data. Also, we should only read audio data that has actual sound,
meaning that any silence (say -10 ¡ db ¡ 10) should be discarded from the sample when extracting audio
data. Just thinking out loud!

I agree here. I was thinking perhaps the threshold could be determined from the “silence” sample.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 34

5.3 Preprocessing

Revision : 1.21

This section outlines the preprocessing mechanisms considered and implemented in MARF. We present
you with the API and structure in Figure 5.2, along with the description of the methods.

5.3.1 “Raw Meat”

Revision : 1.4

5.3.1.1 Description

This is a basic “pass-everything-through” method that doesn’t do actually any preprocessing. Originally
developed within the framework, it was meant to be a base line method, but it gives better top results out
of many configurations. This method is however not “fair” to others as it doesn’t do any normalization so
the samples compared on the original data coming in. Likewise silence and noise removal are not done in
here.

5.3.1.2 Implementation Summary

• Implementation: marf.Preprocessing.Dummy.Raw

• Depends on: marf.Preprocessing.Dummy.Dummy

• Used by: test, marf.MARF, SpeakerIdentApp

5.3.2 Normalization

Since not all voices will be recorded at exactly the same level, it is important to normalize the amplitude
of each sample in order to ensure that features will be comparable. Audio normalization is analogous to
image normalization. Since all samples are to be loaded as floating point values in the range [−1.0, 1.0], it
should be ensured that every sample actually does cover this entire range.

The procedure is relatively simple: find the maximum amplitude in the sample, and then scale the
sample by dividing each point by this maximum. Figure 5.3 illustrates normalized input wave signal.

5.3.3 Noise Removal

Any vocal sample taken in a less-than-perfect (which is always the case) environment will experience a
certain amount of room noise. Since background noise exhibits a certain frequency characteristic, if the
noise is loud enough it may inhibit good recognition of a voice when the voice is later tested in a different
environment. Therefore, it is necessary to remove as much environmental interference as possible.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 35

Figure 5.2: Preprocessing

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 36

Figure 5.3: Normalization of aihua5.wav from the testing set.

To remove room noise, it is first necessary to get a sample of the room noise by itself. This sample,
usually at least 30 seconds long, should provide the general frequency characteristics of the noise when
subjected to FFT analysis. Using a technique similar to overlap-add FFT filtering, room noise can then
be removed from the vocal sample by simply subtracting the noise’s frequency characteristics from the
vocal sample in question.

That is, if S(x) is the sample, N(x) is the noise, and V (x) is the voice, all in the frequency domain,
then

S(x) = N(x) + V (x)

Therefore, it should be possible to isolate the voice:

V (x) = S(x)−N(x)

Unfortunately, time has not permitted us to implement this in practice yet.

5.3.4 Silence Removal

Silence removal got implemented in 0.3.0.6 in MARF’s Preprocessing.removeSilence() methods (and
derivatives, except Raw). For better results, removeSilence() should be executed after normalization,
where the default threshold of 1% (0.01) works well for the most cases.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 37

The silence removal is performed in time domain where the amplitudes below the threshold are dis-
carded from the sample. This also makes the sample smaller and less resemblent to other samples improving
overall recognition performance.

The actual threshold can be a settable parameter through ModuleParams, which is a third parameter
according to the preprocessing parameter protocol.

5.3.5 Endpointing

The Endpointing algorithm got implemented in MARF as follows. By the end-points we mean the local
minimums and maximums in the amplitude changes. A variation of that is whether to consider the
sample edges and continuous data points (of the same value) as end-points. In MARF, all these four
cases are considered as end-points by default with an option to enable or disable the latter two cases
via setters or the ModuleParams facility. The endpointing algorithm is implemented in Endpoint of the
marf.Preprocessing.Endpoint package and appeared in 0.3.0.5.

5.3.6 FFT Filter

The FFT filter is used to modify the frequency domain of the input sample in order to better measure the
distinct frequencies we are interested in. Two filters are useful to speech analysis: high frequency boost,
and low-pass filter (yet we provided more of them, to toy around).

Speech tends to fall off at a rate of 6 dB per octave, and therefore the high frequencies can be boosted
to introduce more precision in their analysis. Speech, after all, is still characteristic of the speaker at
high frequencies, even though they have a lower amplitude. Ideally this boost should be performed via
compression, which automatically boosts the quieter sounds while maintaining the amplitude of the louder
sounds. However, we have simply done this using a positive value for the filter’s frequency response. The
low-pass filter (Section 5.3.7) is used as a simplified noise reducer, simply cutting off all frequencies above
a certain point. The human voice does not generate sounds all the way up to 4000 Hz, which is the
maximum frequency of our test samples, and therefore since this range will only be filled with noise, it
may be better just to cut it out.

Essentially the FFT filter is an implementation of the Overlap-Add method of FIR filter design [Ber05].
The process is a simple way to perform fast convolution, by converting the input to the frequency domain,
manipulating the frequencies according to the desired frequency response, and then using an Inverse-
FFT to convert back to the time domain. Figure 5.4 demonstrates the normalized incoming wave form
translated into the frequency domain.

The code applies the square root of the hamming window to the input windows (which are overlapped
by half-windows), applies the FFT, multiplies the results by the desired frequency response, applies the
Inverse-FFT, and applies the square root of the hamming window again, to produce an undistorted output.

Another similar filter could be used for noise reduction, subtracting the noise characteristics from the
frequency response instead of multiplying, thereby remove the room noise from the input sample.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 38

Figure 5.4: FFT of normalized aihua5.wav from the testing set.

5.3.7 Low-Pass Filter

The low-pass filter has been realized on top of the FFT Filter, by setting up frequency response to zero
for frequencies past certain threshold chosen heuristically based on the window size where to cut off. We
filtered out all the frequencies past 2853 Hz.

Figure 5.5 presents an FFT graph of a low-pass filtered signal.

5.3.8 High-Pass Filter

Revision : 1.7

As the low-pass filter, the high-pass filter (e.g. is in Figure 5.6) has been realized on top of the
FFT Filter, in fact, it is the opposite to low-pass filter, and filters out frequencies before 2853 Hz. The
implementation of the high-pass filter can be found in marf.Preprocessing.FFTFilter.HighPassFilter.

5.3.9 Band-Pass Filter

Band-pass filter in MARF is yet another instance of an FFT Filter (Section 5.3.6), with the default settings
of the band of frequencies of [1000, 2853] Hz. See Figure 5.7.

5.3.10 High Frequency Boost

Revision : 1.11

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 39

Figure 5.5: Low-pass filter applied to aihua5.wav.

Figure 5.6: High-pass filter applied to aihua5.wav.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 40

Figure 5.7: Band-pass filter applied to aihua5.wav.

This filter was also implemented on top of the FFT filter to boost the high-end frequencies. The
frequencies boosted after approx. 1000 Hz by a factor of 5π, heuristically determined, and then re-
normalized. See Figure 5.8. The implementation of the high-frequency boost preprocessor can be found
in marf.Preprocessing.FFTFilter.HighFrequencyBoost.

5.3.11 High-Pass High Frequency Boost Filter

Revision : 1.2

For experimentation we said what would be very useful to do is to test a high-pass filter along with
high-frequency boost. While there is no immediate class that does this, MARF now chains the former and the
latter via the new addition to the preprocessing framework (in 0.3.0-devel-20050606) where a constructor
of one preprocessing module takes up another allowing a preprocessing pipeline on its own. The results
of this experiment can be found in the Consolidated Results section. While they did not yield a better
recognition performance, it was a good try to see. More tweaking and trying is required to make a final
decision on this approach as there is an issue with the re-normalization of the entire input instead of just
the boosted part.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 41

Figure 5.8: High frequency boost filter applied to aihua5.wav.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 42

5.4 Feature Extraction

Revision : 1.14

This section outlines some concrete implementations of feature extraction methods of the MARF

project. First we present you with the API and structure, followed by the description of the methods.
The class diagram of this module set is in Figure 5.9.

5.4.1 Hamming Window

Revision : 1.13

5.4.1.1 Implementation

The Hamming Window implementation in MARF is in the marf.math.Algortithms.Hamming class as of
version 0.3.0-devel-20050606 (a.k.a 0.3.0.2).

5.4.1.2 Theory

In many DSP techniques, it is necessary to consider a smaller portion of the entire speech sample rather
than attempting to process the entire sample at once. The technique of cutting a sample into smaller
pieces to be considered individually is called “windowing”. The simplest kind of window to use is the
“rectangle”, which is simply an unmodified cut from the larger sample.

r(t) =

{
1 for (0 ≤ t ≤ N − 1)
0 otherwise

Unfortunately, rectangular windows can introduce errors, because near the edges of the window there
will potentially be a sudden drop from a high amplitude to nothing, which can produce false “pops” and
“clicks” in the analysis.

A better way to window the sample is to slowly fade out toward the edges, by multiplying the points
in the window by a “window function”. If we take successive windows side by side, with the edges faded
out, we will distort our analysis because the sample has been modified by the window function. To avoid
this, it is necessary to overlap the windows so that all points in the sample will be considered equally.
Ideally, to avoid all distortion, the overlapped window functions should add up to a constant. This is
exactly what the Hamming window does. It is defined as:

x = 0.54− 0.46 · cos
(

2πn

l − 1

)
where x is the new sample amplitude, n is the index into the window, and l is the total length of the
window.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 43

Figure 5.9: Feature Extraction Class Diagram

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 44

5.4.2 Fast Fourier Transform (FFT)

The Fast Fourier Transform (FFT) algorithm is used both for feature extraction and as the basis for the
filter algorithm used in preprocessing. Although a complete discussion of the FFT algorithm is beyond
the scope of this document, a short description of the implementation will be provided here.

Essentially the FFT is an optimized version of the Discrete Fourier Transform. It takes a window
of size 2k and returns a complex array of coefficients for the corresponding frequency curve. For feature
extraction, only the magnitudes of the complex values are used, while the FFT filter operates directly on
the complex results.

The implementation involves two steps: First, shuffling the input positions by a binary reversion
process, and then combining the results via a “butterfly” decimation in time to produce the final frequency
coefficients. The first step corresponds to breaking down the time-domain sample of size n into n frequency-
domain samples of size 1. The second step re-combines the n samples of size 1 into 1 n-sized frequency-
domain sample.

The code used in MARF has been translated from the C code provided in the book, “Numeric Recipes
in C”, [Pre93].

5.4.2.1 FFT Feature Extraction

The frequency-domain view of a window of a time-domain sample gives us the frequency characteristics of
that window. In feature identification, the frequency characteristics of a voice can be considered as a list
of “features” for that voice. If we combine all windows of a vocal sample by taking the average between
them, we can get the average frequency characteristics of the sample. Subsequently, if we average the
frequency characteristics for samples from the same speaker, we are essentially finding the center of the
cluster for the speaker’s samples. Once all speakers have their cluster centers recorded in the training set,
the speaker of an input sample should be identifiable by comparing its frequency analysis with each cluster
center by some classification method.

Since we are dealing with speech, greater accuracy should be attainable by comparing corresponding
phonemes with each other. That is, “th” in “the” should bear greater similarity to “th” in “this” than
will “the” and “this” when compared as a whole.

The only characteristic of the FFT to worry about is the window used as input. Using a normal
rectangular window can result in glitches in the frequency analysis because a sudden cutoff of a high
frequency may distort the results. Therefore it is necessary to apply a Hamming window to the input
sample, and to overlap the windows by half. Since the Hamming window adds up to a constant when
overlapped, no distortion is introduced.

When comparing phonemes, a window size of about 2 or 3 ms is appropriate, but when comparing
whole words, a window size of about 20 ms is more likely to be useful. A larger window size produces a
higher resolution in the frequency analysis.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 45

5.4.3 Linear Predictive Coding (LPC)

This section presents implementation of the LPC Classification module.

One method of feature extraction used in the MARF project was Linear Predictive Coding (LPC)
analysis. It evaluates windowed sections of input speech waveforms and determines a set of coefficients
approximating the amplitude vs. frequency function. This approximation aims to replicate the results of
the Fast Fourier Transform yet only store a limited amount of information: that which is most valuable
to the analysis of speech.

5.4.3.1 Theory

The LPC method is based on the formation of a spectral shaping filter, H(z), that, when applied to a
input excitation source, U(z), yields a speech sample similar to the initial signal. The excitation source,
U(z), is assumed to be a flat spectrum leaving all the useful information in H(z). The model of shaping
filter used in most LPC implementation is called an “all-pole” model, and is as follows:

H(z) =
G(

1−
p∑

k=1

(akz
−k)

)

Where p is the number of poles used. A pole is a root of the denominator in the Laplace transform of
the input-to-output representation of the speech signal.

The coefficients ak are the final representation if the speech waveform. To obtain these coefficients,
the least-square autocorrelation method was used. This method requires the use of the autocorrelation of
a signal defined as:

R(k) =
n−1∑
m=k

(x(n) · x(n− k))

where x(n) is the windowed input signal.

In the LPC analysis, the error in the approximation is used to derive the algorithm. The error at

time n can be expressed in the following manner: e(n) = s(n)−
p∑

k=1

(ak · s(n− k)). Thusly, the complete

squared error of the spectral shaping filter H(z) is:

E =
∞∑

n=−∞

(
x(n)−

p∑
k=1

(ak · x(n− k))

)

To minimize the error, the partial derivative δE
δak

is taken for each k = 1..p, which yields p linear
equations of the form:

∞∑
n=−∞

(x(n− i) · x(n)) =
p∑

k=1

(ak ·
∞∑

n=−∞
(x(n− i) · x(n− k))

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 46

For i = 1..p. Which, using the autocorrelation function, is:

p∑
k=1

(ak ·R(i− k)) = R(i)

Solving these as a set of linear equations and observing that the matrix of autocorrelation values is a
Toeplitz matrix yields the following recursive algorithm for determining the LPC coefficients:

km =

(
R(m)−

m−1∑
k=1

(am−1(k)R(m− k))

)
Em−1

am(m) = km

am(k) = am−1(k)− km · am(m− k) for 1 ≤ k ≤ m− 1,

Em = (1− k2
m) · Em−1

.

This is the algorithm implemented in the MARF LPC module.

5.4.3.2 Usage for Feature Extraction

The LPC coefficients were evaluated at each windowed iteration, yielding a vector of coefficient of size p.
These coefficients were averaged across the whole signal to give a mean coefficient vector representing the
utterance. Thus a p sized vector was used for training and testing. The value of p chosen was based on
tests given speed vs. accuracy. A p value of around 20 was observed to be accurate and computationally
feasible.

5.4.4 F0: The Fundamental Frequency

Revision : 1.6

[WORK ON THIS SECTION IS IN PROGRESS AS WE PROCEED WITH F0 IMPLEMENTATION
IN MARF]

F0, the fundamental frequency, or “pitch”.

Ian: “The text ([O’S00]) doesn’t go into too much detail but gives a few techniques. Most seem to
involve another preprocessing to remove high frequencies and then some estimation and postprocessing
correction. Another, more detailed source may be needed.”

Serguei: “One of the prerequisites we already have: the low-pass filter that does remove the high
frequencies.”

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 47

5.4.5 Min/Max Amplitudes

Revision : 1.4

5.4.5.1 Description

The Min/Max Amplitudes extraction simply involves picking up X maximums and N minimums out of
the sample as features. If the length of the sample is less than X + N , the difference is filled in with the
middle element of the sample.

TODO: This feature extraction does not perform very well yet in any configuration because of the
simplistic implementation: the sample amplitudes are sorted and N minimums and X maximums are
picked up from both ends of the array. As the samples are usually large, the values in each group are
really close if not identical making it hard for any of the classifiers to properly discriminate the subjects.
The future improvements here will include attempts to pick up values in N and X distinct enough to be
features and for the samples smaller than the X + N sum, use increments of the difference of smallest
maximum and largest minimum divided among missing elements in the middle instead one the same value
filling that space in.

5.4.6 Feature Extraction Aggregation

Revision : 1.2

5.4.6.1 Description

This method appeared in MARF as of 0.3.0.5. This class by itself does not do any feature extraction,
but instead allows concatenation of the results of several actual feature extractors to be combined in a
single result. This should give the classification modules more discriminatory power (e.g. when com-
bining the results of FFT and F0 together). FeatureExtractionAggregator itself still implements the
FeatureExtraction API in order to be used in the main pipeline of MARF.

The aggregator expects ModuleParams to be set to the enumeration constants of a module to be
invoked followed by that module’s enclosed instance ModuleParams. As of this implementation, that
enclosed instance of ModuleParams isn’t really used, so the main limitation of the aggregator is that all
the aggregated feature extractors act with their default settings. This will happen until the pipeline is
re-designed a bit to include this capability.

The aggregator clones the incoming preprocessed sample for each feature extractor and runs each
module in a separate thread. A the end, the results of each tread are collected in the same order as specified
by the initial ModuleParams and returned as a concatenated feature vector. Some meta-information is
available if needed.

5.4.6.2 Implementation

Class: marf.FeatureExtraction.FeatureExtractionAggregator.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 48

5.4.7 Random Feature Extraction

By default given a window of size 256 samples, it picks at random a number from a Gaussian distribution,
and multiplies by the incoming sample frequencies. This all adds up and we have a feature vector at the
end. This should be the bottom line performance of all feature extraction methods. It can also be used
as a relatively fast testing module.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 49

5.5 Classification

Revision : 1.13

This section outlines classification methods of the MARF project. First, we present you with the API
and overall structure, followed by the description of the methods. Overall structure of the modules is in
Figure 5.10.

5.5.1 Chebyshev Distance

Chebyshev distance is used along with other distance classifiers for comparison. Chebyshev distance is
also known as a city-block or Manhattan distance. Here’s its mathematical representation:

d(x, y) =
n∑

k=1

(|xk − yk|)

where x and y are feature vectors of the same length n.

5.5.2 Euclidean Distance

The Euclidean Distance classifier uses an Euclidean distance equation to find the distance between two
feature vectors.

If A = (x1, x2) and B = (y1, y2) are two 2-dimensional vectors, then the distance between A and B

can be defined as the square root of the sum of the squares of their differences:

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)
2

This equation can be generalized to n-dimensional vectors by simply adding terms under the square
root.

d(x, y) =
√

(xn − yn)2 + (xn−1 − yn−1)
2 + ... + (x1 − y1)

2

or

d(x, y) =

√√√√ n∑
k=1

(xk − yk)2

or

d(x, y) =
√

(x− y)T (x− y)

A cluster is chosen based on smallest distance to the feature vector in question.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 50

Figure 5.10: Classification

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 51

5.5.3 Minkowski Distance

Minkowski distance measurement is a generalization of both Euclidean and Chebyshev distances.

d(x, y) =

(
n∑

k=1

(|xk − yk|)r

) 1
r

where r is a Minkowski factor. When r = 1, it becomes Chebyshev distance, and when r = 2, it is the
Euclidean one. x and y are feature vectors of the same length n.

5.5.4 Mahalanobis Distance

Revision : 1.7

5.5.4.1 Summary

• Implementation: marf.Classification.Distance.MahalanobisDistance

• Depends on: marf.Classification.Distance.Distance

• Used by: test, marf.MARF, SpeakerIdentApp

5.5.4.2 Theory

This distance classification is meant to be able to detect features that tend to vary together in the same
cluster if linear transformations are applied to them, so it becomes invariant from these transformations
unlike all the other, previously seen distance classifiers.

d(x, y) =
√

(x− y)C−1(x− y)T

where x and y are feature vectors of the same length n, and C is a covariance matrix, learnt during training
for co-related features.

In this release, namely 0.3.0-devel, the covariance matrix being an identity matrix, C = I, making
Mahalanobis distance be the same as the Euclidean one. We need to complete the learning of the covariance
matrix to complete this classifier.

5.5.5 Diff Distance

Revision : 1.2

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 52

5.5.5.1 Summary

• Implementation: marf.Classification.Distance.DiffDistance

• Depends on: marf.Classification.Distance.Distance

• Used by: test, marf.MARF, SpeakerIdentApp

5.5.5.2 Theory

When Serguei Mokhov invented this classifier in May 2005, the original idea was based on the way the
diff UNIX utility works. Later, for performance enhancements it was modified. The essence of the diff
distance is to count how one input vector is different from the other in terms of elements correspondence.
If the Chebyshev distance between the two corresponding elements is greater than some error e, then this
distance is accounted for plus some additional distance penalty p is added. Both factors e and p can vary
depending on desired configuration. If the two elements are equal or pretty close (the difference is less
than e) then a small “bonus” of e is subtracted from the distance.

d(x, y) =
∑

i

|xi − yi|+ p, if |xi − yi| > e, or(−e)

where x and y are feature vectors of the same length.

5.5.6 Artificial Neural Network

This section presents implementation of the Neural Network Classification module.

One method of classification used is an Artificial Neural Network. Such a network is meant to represent
the neuronal organization in organisms. Its use as a classification method lies is in the training of the
network to output a certain value given a particular input [RN95].

5.5.6.1 Theory

A neuron consists of a set of inputs with associated weights, a threshold, an activation function (f(x)) and
an output value. The output value will propagate to further neurons (as input values) in the case where
the neuron is not part of the “output” layer of the network. The relation of the inputs to the activation
function is as follows:

output←− f(in)

where in =
n∑

i=0

(wi · ai) − t, “vector” a is the input activations, “vector” w is the associated weights

and t is the threshold of the network. The following activation function was used:

sigmoid(x; c) = 1
(1+e−cx)

where c is a constant. The advantage of this function is that it is differentiable over the region
(−∞,+∞) and has derivative:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 53

d(sigmoid(x;c))
dx = c · sigmoid(x; c) · (1− sigmoid(x; c))

The structure of the network used was a Feed-Forward Neural Network. This implies that the neurons
are organized in sets, representing layers, and that a neuron in layer j, has inputs from layer j − 1 and
output to layer j + 1 only. This structure facilitates the evaluation and the training of a network. For
instance, in the evaluation of a network on an input vector I, the output of neuron in the first layer is
calculated, followed by the second layer, and so on.

5.5.6.2 Training

Training in a Feed-Forward Neural Network is done through the an algorithm called Back-Propagation
Learning. It is based on the error of the final result of the network. The error the propagated backward
throughout the network, based on the amount the neuron contributed to the error. It is defined as follows:

wi,j ←− βwi,j + α · aj ·∆i

where

∆i = Erri · df
dx(ini)

for neuron i in the output layer

and

∆i = df
dt(ini)

·
n∑

j=0

(∆j) for neurons in other layers

The parameters α and β are used to avoid local minima in the training optimization process. They
weight the combination of the old weight with the addition of the new change. Usual values for these are
determined experimentally.

The Back-Propagation training method was used in conjunction with epoch training. Given a set of
training input vectors Tr, the Back-Propagation training is done on each run. However, the new weight
vectors for each neuron, “vector” w′, are stored and not used. After all the inputs in Tr have been trained,
the new weights are committed and a set of test input vectors Te, are run, and a mean error is calculated.
This mean error determines whether to continue epoch training or not.

5.5.6.3 Usage as a Classifier

As a classifier, a Neural Network is used to map feature vectors to speaker identifiers. The neurons in
the input layer correspond to each feature in the feature vector. The output of the network is the binary
interpretation of the output layer. Therefore the Neural Network has an input layer of size m, where m is
the size of all feature vectors and the output layer has size d(log2(n))e, where n is the maximum speaker
identifier.

A network of this structure is trained with the set of input vectors corresponding to the set of training
samples for each speaker. The network is epoch trained to optimize the results. This fully trained network
is then used for classification in the recognition process.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 54

5.5.7 Random Classification

That might sound strange, but we have a random classifier in MARF. This is more or less testing module
just to quickly test the PR pipeline. It picks an ID in the pseudo-random manner from the list of trained
IDs of subjects to classification. It also serves as a bottom-line of performance (i.e. recognition rate) for all
the other, slightly more sophisticated classification methods meaning performance of the aforementioned
methods must be better than that of the Random; otherwise, there is a problem.

Chapter 6

Statistics Processing

Revision : 1.2

This chapter describes what kind of statistics processing is done in MARF in terms of statistics collec-
tion, estimators, and smoothing and their use.

TODO

6.1 Statistics Collection

TODO

6.2 Statistical Estimators and Smoothing

TODO

55

Chapter 7

Natural Language Processing (NLP)

Revision : 1.5

This chapter will describe the NLP facilities now present in MARF. This includes:

1. Probabilistic Parsing of English

2. Stemming

3. Collocations

4. Related N-gram Models, Zipf’s Law and Maximum Probability Classifiers, Statistical Estimators
and Smoothing.

Please for now refer the related applications in the Applications chapter in Chapter 11.

TODO

7.1 Zipf’s Law

See Section 11.1.2.1.5.

TODO

7.2 Statistical N-gram Models

See Section 11.1.3.10.4.

TODO

56

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 57

7.3 Probabilistic Parsing

See Section 11.1.4.

TODO

7.4 Collocations

TODO

7.5 Stemming

TODO

Chapter 8

GUI

Revision : 1.6

[UPDATE ME]

Even though this section is entitled as GUI, we don’t really have too much GUI yet (it’s planned though,
see TODO, E). We do have a couple of things under the marf.gui package, which we do occasionally use
and eventually they will expand to be a real GUI classes. This tiny package is in Figure 8.1.

TODO

8.1 Spectrogram

Revision : 1.4

Sometimes it is useful to visualize the data we are playing with. One of the typical thing when
dealing with sounds, specifically voice, people are interested in spectrograms of frequency distributions.
The Spectrogram class was designed to handle that and produce spectrograms from both FFT and LPC
algorithms and simply draw them. We did not manage to make it a true GUI component yet, but instead
we made it to dump the spectrograms into PPM-format image files to be looked at using some graphical
package. Two examples of such spectrograms are in the Appendix A.

We are just taking all the Output[] for the spectrogram. It’s supposed to be only half ([O’S00]). We
took a hamming window of the waveform at 1/2 intervals of 128 samples (ie: 8 kHz, 16 ms). By half
intervals we mean that the second half of the window was the first half of the next. O’Shaughnessy in
[O’S00] says this is a good way to use the window. Thus, any streaming of waveform must consider this.

What we did for both the FFT spectrogram and LPC determination was to multiply the signal by the
window and do a doFFT() or a doLPC() coefficient determination on the resulting array of N windowed
samples. This gave us an approximation of the stable signal at s(i · N/2). Or course, we will have to
experiment with windows and see which one is better, but there may be no definitive best.

58

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 59

Figure 8.1: GUI Package

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 60

8.2 Wave Grapher

Revision : 1.4

WaveGrapher is another class designed, as the name suggests, to draw the wave form of the incom-
ing/preprocessed signal. Well, it doesn’t actually draw a thing, but dumps the sample points into a
tab-delimited text file to be loaded into some plotting software, such as gnuplot or Excel. We also use it
to produce graphs of the signal in the frequency domain instead of time domain. Examples of the graphs
of data obtained via this class are in the Preprocessing Section (5.3).

Chapter 9

Sample Data and Experimentation

Revision : 1.21

9.1 Sample Data

Revision : 1.16

We have both female and male speakers, with age ranging from a college student to a University
professor. The table 9.1 has a list of people who have contributed their voice samples for our project (with
the first four being ourselves). We want to thank them once again for helping us out.

9.2 Comparison Setup

The main idea was to compare combinations (in MARF: configurations) of different methods and variations
within them in terms of recognition rate performance. That means that having several preprocessing
modules, several feature extraction modules, and several classification modules, we can (and did) try all
their possible combinations.

That includes:

1. Preprocessing: No-filtering, normalization, low-pass, high-pass, band-pass, and high-frequency boost,
high-pass and boost filters, and endpointing.

2. Feature Extraction: FFT/LPC/Min-Max/Random algorithms comparison.

3. Classification: Distance classifiers, such as Chebyshev, Euclidean, Minkowski, Mahalanobis, and Diff
distances, as well as Neural Network and Random classification.

For this purpose we have written a SpeakerIdentApp, a command-line application (so far, but GUI is
planned) for TI speaker identification. We ran it for every possible configuration with the following shell
script, namely testing.sh:

61

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 62

ID Name Training Samples Testing Samples

1 Serge 14 1
2 Ian 14 1
3 Steve 12 3
4 Jimmy 14 1
5 Dr. C.Y. Suen 2 1
6 Margarita Mokhova 14 1
7 Alexei Mokhov 14 1
8 Alexandr Mokhov 14 1
9 Graham Sinclair 12 2
10 Jihed Halimi 2 1
11 Madhumita Banerjee 3 1
13 Irina Dymova 3 1
14 Aihua Wu 14 1
15 Nick 9 1
16 Michelle Khalife 14 1
17 Shabana 7 1
18 Van Halen 8 1
19 RHCP 8 1
20 Talal Al-Khoury 14 1
21 Ke Gong 14 1
22 Emily Wu Rong 14 1
23 Emily Ying Lu 14 1
24 Shaozhen Fang 14 1
25 Chunlei He 14 1
26 Shuxin Fan 15 1
27 Shivani Bhat 14 1

Total 25 293 29

Table 9.1: Speakers contributed their voice samples.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 63

#!/bin/tcsh -f

#

Batch Processing of Training/Testing Samples

NOTE: Make take quite some time to execute

#

Copyright (C) 2002 - 2007 The MARF Research and Development Group

#

$Header: /cvsroot/marf/apps/SpeakerIdentApp/testing.sh,v 1.43 2007/06/20 04:28:45 mokhov Exp $

#

#

Set environment variables, if needed

#

setenv CLASSPATH .:marf.jar

setenv EXTDIRS

#

Set flags to use in the batch execution

#

set java = ’java -ea -verify -Xmx512m’

#set debug = ’-debug’

set debug = ’’

set graph = ’’

#set graph = ’-graph’

#set spectrogram = ’-spectrogram’

set spectrogram = ’’

if($1 == ’--reset’) then

echo "Resetting Stats..."

$java SpeakerIdentApp --reset

exit 0

endif

if($1 == ’--retrain’) then

echo "Training..."

Always reset stats before retraining the whole thing

$java SpeakerIdentApp --reset

foreach preprep ("" -silence)

foreach prep (-norm -boost -low -high -band -highpassboost -raw -endp -lowcfe -highcfe -bandcfe -bandstopcfe)

foreach feat (-fft -lpc -randfe -minmax -aggr)

Here we specify which classification modules to use for

training.

#

NOTE: for most distance classifiers it’s not important

which exactly it is, because the one of the generic Distance is used.

Exception from this rule is the Mahalanobis Distance, which needs

to learn its Covariance Matrix.

foreach class (-cheb -mah -randcl -nn)

echo "Config: $preprep $prep $feat $class $spectrogram $graph $debug"

date

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 64

XXX: We cannot cope gracefully right now with these combinations in the

typical PC/JVM set up --- too many links in the fully-connected NNet,

so can run out of memory quite often; hence, skip them for now.

if("$class" == "-nn" && ("$feat" == "-fft" || "$feat" == "-randfe" || "$feat" == "-aggr")) then

echo "skipping..."

continue

endif

time $java SpeakerIdentApp --train training-samples $preprep $prep $feat $class $spectrogram $graph $debug

end

end

end

end

endif

echo "Testing..."

foreach preprep ("" -silence)

foreach prep (-norm -boost -low -high -band -highpassboost -raw -endp -lowcfe -highcfe -bandcfe -bandstopcfe)

foreach feat (-fft -lpc -randfe -minmax -aggr)

foreach class (-eucl -cheb -mink -mah -diff -hamming -cos -randcl -nn)

echo "=-="

echo "Config: $preprep $prep $feat $class $spectrogram $graph $debug"

date

echo "==="

XXX: We cannot cope gracefully right now with these combinations in the

typical PC/JVM set up --- too many links in the fully-connected NNet,

so can run out of memory quite often; hence, skip them for now.

if("$class" == "-nn" && ("$feat" == "-fft" || "$feat" == "-randfe" || "$feat" == "-aggr")) then

echo "skipping..."

continue

endif

time $java SpeakerIdentApp --batch-ident testing-samples $preprep $prep $feat $class $spectrogram $graph $debug

echo "---"

end

end

end

end

echo "Stats:"

$java SpeakerIdentApp --stats | tee stats.txt

$java SpeakerIdentApp --best-score | tee best-score.tex

date | tee stats-date.tex

echo "Testing Done"

exit 0

EOF

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 65

The above script is for Linux/UNIX environments. To run a similar script from Windows, use
testing.bat for classification and the retrain shortcut for re-training and classification. These have
been completed during the development of the 0.3.0 series.

See the results section (10) for results analysis.

9.3 What Else Could/Should/Will Be Done

There is a lot more that we realistically could do, but due to lack of time, these things are not in yet. If
you would like to contribute, let us know, meanwhile we’ll keep working at our speed.

9.3.1 Combination of Feature Extraction Methods

For example, assuming we use a combination of LPC coefficients and F0 estimation, we could compare the
results of different combinations of these, and discuss them later. Same with the Neural Nets (modifying
number of layers and number or neurons, etc.).

We could also do a 1024 FFT analysis and compare it against a 128 FFT analysis. (That is, the size
of the resulting feature vector would be 512 or 64 respectively). With LPC, one can specify the number
of coefficients you want, the more you have the more precise the analysis will be.

9.3.2 Entire Recognition Path

The LPC module is used to generate a mean vector of LPC coefficients for the utterance. F0 is used to
find the average fundamental frequency of the utterance. The results are concatenated to form the output
vector, in a particular order. The classifier would take into account the weighting of the features: Neural
Network would do so implicitly if it benefits the speaker matching, and stochastic can be modified to give
more weight to the F0 or vice versa, depending on what we see best (i.e.: the covariance matrix in the
Mahalanobis distance (5.5.4)).

9.3.3 More Methods

Things like F0, stochastic, and some other methods have not made to this release. More detailed on this
aspect, please refer to the TODO list in the Appendix.

Chapter 10

Experimentation Results

Revision : 1.23

10.1 Notes

Before we get to numbers, few notes and observations first:

1. By increasing the number of samples our results got better; with few exceptions, however. This
can be explained by the diversity of the recording equipment, a lot less than uniform number of
samples per speaker, and absence of noise removal. All the samples were recorded in not the same
environments. The results then start averaging after awhile.

2. Another observation we made from our output, is that when the speaker is guessed incorrectly, quite
often the second guess is correct, so we included this in our results as if we were “guessing” right
from the second attempt.

3. FUN. Interesting to note, that we also tried to take some samples of music bands, and feed it to our
application along with the speakers, and application’s performance didn’t suffer, yet even improved
because the samples were treated in the same manner. The groups were not mentioned in the table,
so we name them here: Van Halen [8:1] and Red Hot Chili Peppers [10:1] (where numbers represent
[training:testing] samples used).

66

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 67

10.2 SpeakerIdentApp’s Options

Configuration parameters were extracted from the command line, which SpeakerIdentApp can be invoked
with. They mean the following:

Usage:

java SpeakerIdentApp --train <samples-dir> [options] -- train mode

--single-train <sample> [options] -- add a single sample to the training set

--ident <sample> [options] -- identification mode

--batch-ident <samples-dir> [options] -- batch identification mode

--gui -- use GUI as a user interface

--stats -- display stats

--best-score -- display best classification result

--reset -- reset stats

--version -- display version info

--help | -h -- display this help and exit

Options (one or more of the following):

Preprocessing:

-silence - remove silence (can be combined with any below)

-noise - remove noise (can be combined with any below)

-raw - no preprocessing

-norm - use just normalization, no filtering

-low - use low-pass FFT filter

-high - use high-pass FFT filter

-boost - use high-frequency-boost FFT preprocessor

-band - use band-pass FFT filter

-endp - use endpointing

-lowcfe - use low-pass CFE filter

-highcfe - use high-pass CFE filter

-bandcfe - use band-pass CFE filter

-bandstopcfe - use band-stop CFE filter

Feature Extraction:

-lpc - use LPC

-fft - use FFT

-minmax - use Min/Max Amplitudes

-randfe - use random feature extraction

-aggr - use aggregated FFT+LPC feature extraction

Classification:

-nn - use Neural Network

-cheb - use Chebyshev Distance

-eucl - use Euclidean Distance

-mink - use Minkowski Distance

-diff - use Diff-Distance

-randcl - use random classification

Misc:

-debug - include verbose debug output

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 68

-spectrogram - dump spectrogram image after feature extraction

-graph - dump wave graph before preprocessing and after feature extraction

<integer> - expected speaker ID

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 69

10.3 Consolidated Results

Our ultimate results 1 for all configurations we can have and samples we’ve got are below. Looks like
our best results are with “-endp -lpc -cheb”, “-raw -aggr -eucl”, “-norm -aggr -diff”, “-norm -aggr -cheb”,
“-raw -aggr -mah”, “-raw -fft -mah”, “-raw -fft -eucl”, and “-norm -fft -diff” with the top result being
around 82.76 % and the second-best is around 86.21 % (see Table 10.1).

1authoritative as of Tue Jan 24 06:23:21 EST 2006

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 70

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 1 -endp -lpc -cheb 24 5 82.76

1st 2 -raw -aggr -eucl 22 7 75.86

1st 3 -norm -aggr -diff 22 7 75.86

1st 4 -norm -aggr -cheb 22 7 75.86

1st 5 -raw -aggr -mah 22 7 75.86

1st 6 -raw -fft -mah 22 7 75.86

1st 7 -raw -fft -eucl 22 7 75.86

1st 8 -norm -fft -diff 22 7 75.86

1st 9 -norm -fft -cheb 21 8 72.41

1st 10 -raw -aggr -cheb 21 8 72.41

1st 11 -endp -lpc -mah 21 8 72.41

1st 12 -endp -lpc -eucl 21 8 72.41

1st 13 -raw -fft -mink 21 8 72.41

1st 14 -norm -fft -mah 21 8 72.41

1st 15 -norm -fft -eucl 21 8 72.41

1st 16 -norm -aggr -eucl 20 9 68.97

1st 17 -low -aggr -diff 20 9 68.97

1st 18 -norm -aggr -mah 20 9 68.97

1st 19 -raw -fft -cheb 20 9 68.97

1st 20 -raw -aggr -mink 20 9 68.97

1st 21 -norm -aggr -mink 19 10 65.52

1st 22 -low -fft -cheb 19 10 65.52

1st 23 -raw -lpc -mink 19 10 65.52

1st 24 -raw -lpc -diff 19 10 65.52

1st 25 -raw -lpc -eucl 19 10 65.52

1st 26 -raw -lpc -mah 19 10 65.52

1st 27 -raw -lpc -cheb 19 10 65.52

1st 28 -low -aggr -eucl 19 10 65.52

1st 29 -norm -lpc -mah 19 10 65.52

Table 10.1: Consolidated results, Part 1.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 71

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 30 -norm -lpc -mink 19 10 65.52

1st 31 -norm -lpc -diff 19 10 65.52

1st 32 -norm -lpc -eucl 19 10 65.52

1st 33 -low -aggr -cheb 19 10 65.52

1st 34 -norm -lpc -cheb 19 10 65.52

1st 35 -low -aggr -mah 19 10 65.52

1st 36 -low -fft -mah 19 10 65.52

1st 37 -norm -fft -mink 19 10 65.52

1st 38 -low -fft -diff 19 10 65.52

1st 39 -low -fft -eucl 19 10 65.52

1st 40 -raw -aggr -diff 19 10 65.52

1st 41 -high -aggr -mink 18 11 62.07

1st 42 -high -aggr -eucl 18 11 62.07

1st 43 -endp -lpc -mink 18 11 62.07

1st 44 -high -aggr -mah 18 11 62.07

1st 45 -raw -fft -diff 18 11 62.07

1st 46 -high -aggr -cheb 17 12 58.62

1st 47 -low -aggr -mink 17 12 58.62

1st 48 -low -fft -mink 17 12 58.62

1st 49 -high -fft -cheb 16 13 55.17

1st 50 -high -fft -mah 16 13 55.17

1st 51 -low -lpc -cheb 16 13 55.17

1st 52 -high -fft -mink 16 13 55.17

1st 53 -high -fft -eucl 16 13 55.17

1st 54 -low -lpc -eucl 15 14 51.72

1st 55 -low -lpc -mah 15 14 51.72

1st 56 -low -lpc -mink 14 15 48.28

1st 57 -low -lpc -diff 14 15 48.28

1st 58 -high -lpc -cheb 14 15 48.28

1st 59 -raw -lpc -nn 14 15 48.28

Table 10.2: Consolidated results, Part 2.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 72

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 60 -band -aggr -diff 13 16 44.83

1st 61 -norm -lpc -nn 13 16 44.83

1st 62 -band -fft -diff 13 16 44.83

1st 63 -high -lpc -eucl 12 17 41.38

1st 64 -high -aggr -diff 12 17 41.38

1st 65 -endp -fft -diff 12 17 41.38

1st 66 -endp -fft -eucl 12 17 41.38

1st 67 -band -lpc -mink 12 17 41.38

1st 68 -band -lpc -mah 12 17 41.38

1st 69 -band -lpc -eucl 12 17 41.38

1st 70 -endp -fft -cheb 12 17 41.38

1st 71 -band -lpc -cheb 12 17 41.38

1st 72 -endp -fft -mah 12 17 41.38

1st 73 -high -lpc -mah 12 17 41.38

1st 74 -endp -aggr -diff 12 17 41.38

1st 75 -endp -aggr -eucl 12 17 41.38

1st 76 -endp -aggr -mah 12 17 41.38

1st 77 -endp -aggr -cheb 12 17 41.38

1st 78 -high -lpc -diff 11 18 37.93

1st 79 -band -aggr -eucl 11 18 37.93

1st 80 -endp -fft -mink 11 18 37.93

1st 81 -band -aggr -cheb 11 18 37.93

1st 82 -band -lpc -diff 11 18 37.93

1st 83 -band -aggr -mah 11 18 37.93

1st 84 -band -fft -mah 11 18 37.93

1st 85 -band -fft -eucl 11 18 37.93

1st 86 -endp -aggr -mink 11 18 37.93

1st 87 -high -fft -diff 11 18 37.93

1st 88 -high -lpc -mink 10 19 34.48

1st 89 -raw -minmax -mink 10 19 34.48

Table 10.3: Consolidated results, Part 3.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 73

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 90 -raw -minmax -eucl 10 19 34.48

1st 91 -band -aggr -mink 10 19 34.48

1st 92 -raw -minmax -mah 10 19 34.48

1st 93 -endp -minmax -eucl 10 19 34.48

1st 94 -endp -minmax -cheb 10 19 34.48

1st 95 -endp -minmax -mah 10 19 34.48

1st 96 -band -fft -cheb 10 19 34.48

1st 97 -raw -minmax -cheb 9 20 31.03

1st 98 -endp -lpc -nn 9 20 31.03

1st 99 -endp -lpc -diff 9 20 31.03

1st 100 -endp -minmax -mink 8 21 27.59

1st 101 -endp -randfe -diff 7 22 24.14

1st 102 -endp -randfe -cheb 7 22 24.14

1st 103 -endp -minmax -diff 7 22 24.14

1st 104 -endp -minmax -nn 7 22 24.14

1st 105 -band -fft -mink 7 22 24.14

1st 106 -norm -randfe -eucl 6 23 20.69

1st 107 -raw -minmax -diff 6 23 20.69

1st 108 -endp -randfe -eucl 6 23 20.69

1st 109 -endp -randfe -mah 6 23 20.69

1st 110 -low -randfe -mink 6 23 20.69

1st 111 -norm -randfe -mah 6 23 20.69

1st 112 -norm -minmax -eucl 6 23 20.69

1st 113 -norm -minmax -cheb 6 23 20.69

1st 114 -low -minmax -mink 6 23 20.69

1st 115 -norm -minmax -mah 6 23 20.69

1st 116 -norm -randfe -mink 6 23 20.69

1st 117 -endp -randfe -mink 5 24 17.24

1st 118 -low -minmax -mah 5 24 17.24

1st 119 -low -randfe -eucl 5 24 17.24

Table 10.4: Consolidated results, Part 4.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 74

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 120 -high -minmax -mah 5 24 17.24

1st 121 -raw -randfe -mink 5 24 17.24

1st 122 -low -randfe -mah 5 24 17.24

1st 123 -low -minmax -diff 5 24 17.24

1st 124 -high -minmax -diff 5 24 17.24

1st 125 -high -minmax -eucl 5 24 17.24

1st 126 -low -minmax -eucl 5 24 17.24

1st 127 -low -minmax -cheb 5 24 17.24

1st 128 -norm -randfe -diff 4 25 13.79

1st 129 -norm -randfe -cheb 4 25 13.79

1st 130 -high -randfe -mink 4 25 13.79

1st 131 -low -randfe -diff 4 25 13.79

1st 132 -high -randfe -diff 4 25 13.79

1st 133 -high -randfe -eucl 4 25 13.79

1st 134 -high -randfe -cheb 4 25 13.79

1st 135 -low -randfe -cheb 4 25 13.79

1st 136 -norm -minmax -mink 4 25 13.79

1st 137 -raw -randfe -eucl 4 25 13.79

1st 138 -band -lpc -nn 4 25 13.79

1st 139 -raw -randfe -mah 4 25 13.79

1st 140 -high -minmax -mink 4 25 13.79

1st 141 -raw -minmax -nn 4 25 13.79

1st 142 -high -randfe -mah 4 25 13.79

1st 143 -high -minmax -cheb 4 25 13.79

1st 144 -high -minmax -nn 4 25 13.79

1st 145 -endp -randfe -randcl 4 25 13.79

1st 146 -band -minmax -mink 3 26 10.34

1st 147 -band -minmax -diff 3 26 10.34

1st 148 -band -minmax -eucl 3 26 10.34

1st 149 -band -minmax -mah 3 26 10.34

Table 10.5: Consolidated results, Part 5.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 75

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 150 -raw -minmax -randcl 3 26 10.34

1st 151 -band -minmax -cheb 3 26 10.34

1st 152 -low -lpc -nn 3 26 10.34

1st 153 -raw -randfe -diff 3 26 10.34

1st 154 -norm -minmax -diff 3 26 10.34

1st 155 -boost -lpc -randcl 3 26 10.34

1st 156 -raw -randfe -cheb 3 26 10.34

1st 157 -boost -minmax -nn 3 26 10.34

1st 158 -highpassboost -lpc -nn 3 26 10.34

1st 159 -norm -minmax -nn 3 26 10.34

1st 160 -highpassboost -minmax -nn 3 26 10.34

1st 161 -boost -minmax -randcl 3 26 10.34

1st 162 -boost -lpc -nn 3 26 10.34

1st 163 -raw -aggr -randcl 2 27 6.90

1st 164 -band -randfe -mah 2 27 6.90

1st 165 -highpassboost -lpc -randcl 2 27 6.90

1st 166 -band -randfe -diff 2 27 6.90

1st 167 -band -randfe -eucl 2 27 6.90

1st 168 -low -minmax -nn 2 27 6.90

1st 169 -boost -randfe -randcl 2 27 6.90

1st 170 -band -randfe -cheb 2 27 6.90

1st 171 -raw -lpc -randcl 2 27 6.90

1st 172 -highpassboost -aggr -randcl 2 27 6.90

1st 173 -boost -fft -randcl 2 27 6.90

1st 174 -highpassboost -minmax -diff 1 28 3.45

1st 175 -boost -randfe -eucl 1 28 3.45

1st 176 -highpassboost -minmax -eucl 1 28 3.45

1st 177 -boost -lpc -mink 1 28 3.45

1st 178 -boost -lpc -diff 1 28 3.45

1st 179 -boost -fft -mah 1 28 3.45

Table 10.6: Consolidated results, Part 6.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 76

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 180 -boost -lpc -eucl 1 28 3.45

1st 181 -low -fft -randcl 1 28 3.45

1st 182 -low -minmax -randcl 1 28 3.45

1st 183 -boost -minmax -mah 1 28 3.45

1st 184 -highpassboost -minmax -mah 1 28 3.45

1st 185 -boost -randfe -cheb 1 28 3.45

1st 186 -high -randfe -randcl 1 28 3.45

1st 187 -highpassboost -minmax -cheb 1 28 3.45

1st 188 -highpassboost -fft -mah 1 28 3.45

1st 189 -boost -lpc -cheb 1 28 3.45

1st 190 -boost -aggr -mah 1 28 3.45

1st 191 -highpassboost -lpc -mink 1 28 3.45

1st 192 -highpassboost -lpc -diff 1 28 3.45

1st 193 -endp -lpc -randcl 1 28 3.45

1st 194 -highpassboost -lpc -eucl 1 28 3.45

1st 195 -high -minmax -randcl 1 28 3.45

1st 196 -highpassboost -lpc -cheb 1 28 3.45

1st 197 -norm -fft -randcl 1 28 3.45

1st 198 -band -aggr -randcl 1 28 3.45

1st 199 -low -randfe -randcl 1 28 3.45

1st 200 -boost -aggr -mink 1 28 3.45

1st 201 -boost -aggr -diff 1 28 3.45

1st 202 -endp -aggr -randcl 1 28 3.45

1st 203 -boost -aggr -eucl 1 28 3.45

1st 204 -boost -fft -mink 1 28 3.45

1st 205 -boost -randfe -mah 1 28 3.45

1st 206 -boost -fft -diff 1 28 3.45

1st 207 -boost -fft -eucl 1 28 3.45

1st 208 -highpassboost -randfe -mink 1 28 3.45

1st 209 -highpassboost -randfe -diff 1 28 3.45

Table 10.7: Consolidated results, Part 7.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 77

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 210 -boost -minmax -mink 1 28 3.45

1st 211 -boost -minmax -diff 1 28 3.45

1st 212 -highpassboost -randfe -eucl 1 28 3.45

1st 213 -boost -minmax -eucl 1 28 3.45

1st 214 -low -aggr -randcl 1 28 3.45

1st 215 -band -fft -randcl 1 28 3.45

1st 216 -boost -aggr -cheb 1 28 3.45

1st 217 -band -randfe -randcl 1 28 3.45

1st 218 -boost -fft -cheb 1 28 3.45

1st 219 -highpassboost -aggr -mink 1 28 3.45

1st 220 -highpassboost -aggr -diff 1 28 3.45

1st 221 -highpassboost -fft -mink 1 28 3.45

1st 222 -endp -minmax -randcl 1 28 3.45

1st 223 -highpassboost -fft -diff 1 28 3.45

1st 224 -highpassboost -aggr -eucl 1 28 3.45

1st 225 -highpassboost -randfe -cheb 1 28 3.45

1st 226 -high -lpc -nn 1 28 3.45

1st 227 -boost -minmax -cheb 1 28 3.45

1st 228 -highpassboost -fft -eucl 1 28 3.45

1st 229 -boost -lpc -mah 1 28 3.45

1st 230 -norm -randfe -randcl 1 28 3.45

1st 231 -highpassboost -aggr -cheb 1 28 3.45

1st 232 -highpassboost -fft -cheb 1 28 3.45

1st 233 -band -minmax -randcl 1 28 3.45

1st 234 -boost -aggr -randcl 1 28 3.45

1st 235 -highpassboost -lpc -mah 1 28 3.45

1st 236 -highpassboost -aggr -mah 1 28 3.45

1st 237 -high -lpc -randcl 1 28 3.45

1st 238 -highpassboost -randfe -mah 1 28 3.45

1st 239 -boost -randfe -mink 1 28 3.45

Table 10.8: Consolidated results, Part 8.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 78

Guess Run # Configuration GOOD BAD Recognition Rate,%

1st 240 -boost -randfe -diff 1 28 3.45

1st 241 -highpassboost -minmax -mink 1 28 3.45

1st 242 -raw -randfe -randcl 0 29 0.00

1st 243 -highpassboost -fft -randcl 0 29 0.00

1st 244 -band -lpc -randcl 0 29 0.00

1st 245 -endp -fft -randcl 0 29 0.00

1st 246 -raw -fft -randcl 0 29 0.00

1st 247 -norm -lpc -randcl 0 29 0.00

1st 248 -highpassboost -randfe -randcl 0 29 0.00

1st 249 -high -aggr -randcl 0 29 0.00

1st 250 -band -randfe -mink 0 29 0.00

1st 251 -low -lpc -randcl 0 29 0.00

1st 252 -highpassboost -minmax -randcl 0 29 0.00

1st 253 -norm -aggr -randcl 0 29 0.00

1st 254 -high -fft -randcl 0 29 0.00

1st 255 -band -minmax -nn 0 29 0.00

1st 256 -norm -minmax -randcl 0 29 0.00

2nd 1 -endp -lpc -cheb 24 5 82.76

2nd 2 -raw -aggr -eucl 24 5 82.76

2nd 3 -norm -aggr -diff 24 5 82.76

2nd 4 -norm -aggr -cheb 24 5 82.76

2nd 5 -raw -aggr -mah 24 5 82.76

2nd 6 -raw -fft -mah 24 5 82.76

2nd 7 -raw -fft -eucl 24 5 82.76

2nd 8 -norm -fft -diff 24 5 82.76

2nd 9 -norm -fft -cheb 24 5 82.76

2nd 10 -raw -aggr -cheb 22 7 75.86

2nd 11 -endp -lpc -mah 22 7 75.86

2nd 12 -endp -lpc -eucl 22 7 75.86

2nd 13 -raw -fft -mink 25 4 86.21

Table 10.9: Consolidated results, Part 9.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 79

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 14 -norm -fft -mah 24 5 82.76

2nd 15 -norm -fft -eucl 24 5 82.76

2nd 16 -norm -aggr -eucl 24 5 82.76

2nd 17 -low -aggr -diff 21 8 72.41

2nd 18 -norm -aggr -mah 24 5 82.76

2nd 19 -raw -fft -cheb 22 7 75.86

2nd 20 -raw -aggr -mink 25 4 86.21

2nd 21 -norm -aggr -mink 24 5 82.76

2nd 22 -low -fft -cheb 22 7 75.86

2nd 23 -raw -lpc -mink 23 6 79.31

2nd 24 -raw -lpc -diff 23 6 79.31

2nd 25 -raw -lpc -eucl 23 6 79.31

2nd 26 -raw -lpc -mah 23 6 79.31

2nd 27 -raw -lpc -cheb 23 6 79.31

2nd 28 -low -aggr -eucl 23 6 79.31

2nd 29 -norm -lpc -mah 23 6 79.31

2nd 30 -norm -lpc -mink 23 6 79.31

2nd 31 -norm -lpc -diff 23 6 79.31

2nd 32 -norm -lpc -eucl 23 6 79.31

2nd 33 -low -aggr -cheb 22 7 75.86

2nd 34 -norm -lpc -cheb 23 6 79.31

2nd 35 -low -aggr -mah 23 6 79.31

2nd 36 -low -fft -mah 23 6 79.31

2nd 37 -norm -fft -mink 24 5 82.76

2nd 38 -low -fft -diff 21 8 72.41

2nd 39 -low -fft -eucl 23 6 79.31

2nd 40 -raw -aggr -diff 22 7 75.86

2nd 41 -high -aggr -mink 21 8 72.41

2nd 42 -high -aggr -eucl 21 8 72.41

2nd 43 -endp -lpc -mink 20 9 68.97

Table 10.10: Consolidated results, Part 10.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 80

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 44 -high -aggr -mah 21 8 72.41

2nd 45 -raw -fft -diff 22 7 75.86

2nd 46 -high -aggr -cheb 20 9 68.97

2nd 47 -low -aggr -mink 24 5 82.76

2nd 48 -low -fft -mink 24 5 82.76

2nd 49 -high -fft -cheb 20 9 68.97

2nd 50 -high -fft -mah 21 8 72.41

2nd 51 -low -lpc -cheb 22 7 75.86

2nd 52 -high -fft -mink 19 10 65.52

2nd 53 -high -fft -eucl 21 8 72.41

2nd 54 -low -lpc -eucl 20 9 68.97

2nd 55 -low -lpc -mah 20 9 68.97

2nd 56 -low -lpc -mink 18 11 62.07

2nd 57 -low -lpc -diff 21 8 72.41

2nd 58 -high -lpc -cheb 19 10 65.52

2nd 59 -raw -lpc -nn 14 15 48.28

2nd 60 -band -aggr -diff 14 15 48.28

2nd 61 -norm -lpc -nn 15 14 51.72

2nd 62 -band -fft -diff 14 15 48.28

2nd 63 -high -lpc -eucl 17 12 58.62

2nd 64 -high -aggr -diff 18 11 62.07

2nd 65 -endp -fft -diff 17 12 58.62

2nd 66 -endp -fft -eucl 16 13 55.17

2nd 67 -band -lpc -mink 16 13 55.17

2nd 68 -band -lpc -mah 16 13 55.17

2nd 69 -band -lpc -eucl 16 13 55.17

2nd 70 -endp -fft -cheb 17 12 58.62

2nd 71 -band -lpc -cheb 17 12 58.62

2nd 72 -endp -fft -mah 16 13 55.17

2nd 73 -high -lpc -mah 17 12 58.62

Table 10.11: Consolidated results, Part 11.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 81

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 74 -endp -aggr -diff 18 11 62.07

2nd 75 -endp -aggr -eucl 17 12 58.62

2nd 76 -endp -aggr -mah 17 12 58.62

2nd 77 -endp -aggr -cheb 18 11 62.07

2nd 78 -high -lpc -diff 18 11 62.07

2nd 79 -band -aggr -eucl 15 14 51.72

2nd 80 -endp -fft -mink 14 15 48.28

2nd 81 -band -aggr -cheb 14 15 48.28

2nd 82 -band -lpc -diff 17 12 58.62

2nd 83 -band -aggr -mah 15 14 51.72

2nd 84 -band -fft -mah 15 14 51.72

2nd 85 -band -fft -eucl 15 14 51.72

2nd 86 -endp -aggr -mink 14 15 48.28

2nd 87 -high -fft -diff 18 11 62.07

2nd 88 -high -lpc -mink 14 15 48.28

2nd 89 -raw -minmax -mink 12 17 41.38

2nd 90 -raw -minmax -eucl 12 17 41.38

2nd 91 -band -aggr -mink 13 16 44.83

2nd 92 -raw -minmax -mah 12 17 41.38

2nd 93 -endp -minmax -eucl 12 17 41.38

2nd 94 -endp -minmax -cheb 12 17 41.38

2nd 95 -endp -minmax -mah 12 17 41.38

2nd 96 -band -fft -cheb 14 15 48.28

2nd 97 -raw -minmax -cheb 11 18 37.93

2nd 98 -endp -lpc -nn 12 17 41.38

2nd 99 -endp -lpc -diff 19 10 65.52

2nd 100 -endp -minmax -mink 12 17 41.38

2nd 101 -endp -randfe -diff 8 21 27.59

2nd 102 -endp -randfe -cheb 8 21 27.59

2nd 103 -endp -minmax -diff 12 17 41.38

Table 10.12: Consolidated results, Part 12.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 82

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 104 -endp -minmax -nn 7 22 24.14

2nd 105 -band -fft -mink 13 16 44.83

2nd 106 -norm -randfe -eucl 10 19 34.48

2nd 107 -raw -minmax -diff 10 19 34.48

2nd 108 -endp -randfe -eucl 9 20 31.03

2nd 109 -endp -randfe -mah 9 20 31.03

2nd 110 -low -randfe -mink 9 20 31.03

2nd 111 -norm -randfe -mah 10 19 34.48

2nd 112 -norm -minmax -eucl 9 20 31.03

2nd 113 -norm -minmax -cheb 10 19 34.48

2nd 114 -low -minmax -mink 8 21 27.59

2nd 115 -norm -minmax -mah 9 20 31.03

2nd 116 -norm -randfe -mink 10 19 34.48

2nd 117 -endp -randfe -mink 8 21 27.59

2nd 118 -low -minmax -mah 6 23 20.69

2nd 119 -low -randfe -eucl 9 20 31.03

2nd 120 -high -minmax -mah 6 23 20.69

2nd 121 -raw -randfe -mink 9 20 31.03

2nd 122 -low -randfe -mah 9 20 31.03

2nd 123 -low -minmax -diff 6 23 20.69

2nd 124 -high -minmax -diff 6 23 20.69

2nd 125 -high -minmax -eucl 6 23 20.69

2nd 126 -low -minmax -eucl 6 23 20.69

2nd 127 -low -minmax -cheb 6 23 20.69

2nd 128 -norm -randfe -diff 10 19 34.48

2nd 129 -norm -randfe -cheb 10 19 34.48

2nd 130 -high -randfe -mink 5 24 17.24

2nd 131 -low -randfe -diff 9 20 31.03

2nd 132 -high -randfe -diff 7 22 24.14

2nd 133 -high -randfe -eucl 6 23 20.69

Table 10.13: Consolidated results, Part 13.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 83

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 134 -high -randfe -cheb 7 22 24.14

2nd 135 -low -randfe -cheb 9 20 31.03

2nd 136 -norm -minmax -mink 10 19 34.48

2nd 137 -raw -randfe -eucl 8 21 27.59

2nd 138 -band -lpc -nn 4 25 13.79

2nd 139 -raw -randfe -mah 8 21 27.59

2nd 140 -high -minmax -mink 6 23 20.69

2nd 141 -raw -minmax -nn 4 25 13.79

2nd 142 -high -randfe -mah 6 23 20.69

2nd 143 -high -minmax -cheb 5 24 17.24

2nd 144 -high -minmax -nn 4 25 13.79

2nd 145 -endp -randfe -randcl 6 23 20.69

2nd 146 -band -minmax -mink 5 24 17.24

2nd 147 -band -minmax -diff 5 24 17.24

2nd 148 -band -minmax -eucl 5 24 17.24

2nd 149 -band -minmax -mah 5 24 17.24

2nd 150 -raw -minmax -randcl 3 26 10.34

2nd 151 -band -minmax -cheb 4 25 13.79

2nd 152 -low -lpc -nn 4 25 13.79

2nd 153 -raw -randfe -diff 6 23 20.69

2nd 154 -norm -minmax -diff 9 20 31.03

2nd 155 -boost -lpc -randcl 3 26 10.34

2nd 156 -raw -randfe -cheb 6 23 20.69

2nd 157 -boost -minmax -nn 4 25 13.79

2nd 158 -highpassboost -lpc -nn 4 25 13.79

2nd 159 -norm -minmax -nn 3 26 10.34

2nd 160 -highpassboost -minmax -nn 4 25 13.79

2nd 161 -boost -minmax -randcl 5 24 17.24

2nd 162 -boost -lpc -nn 4 25 13.79

2nd 163 -raw -aggr -randcl 4 25 13.79

Table 10.14: Consolidated results, Part 14.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 84

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 164 -band -randfe -mah 5 24 17.24

2nd 165 -highpassboost -lpc -randcl 2 27 6.90

2nd 166 -band -randfe -diff 4 25 13.79

2nd 167 -band -randfe -eucl 5 24 17.24

2nd 168 -low -minmax -nn 3 26 10.34

2nd 169 -boost -randfe -randcl 3 26 10.34

2nd 170 -band -randfe -cheb 4 25 13.79

2nd 171 -raw -lpc -randcl 3 26 10.34

2nd 172 -highpassboost -aggr -randcl 2 27 6.90

2nd 173 -boost -fft -randcl 3 26 10.34

2nd 174 -highpassboost -minmax -diff 2 27 6.90

2nd 175 -boost -randfe -eucl 2 27 6.90

2nd 176 -highpassboost -minmax -eucl 2 27 6.90

2nd 177 -boost -lpc -mink 2 27 6.90

2nd 178 -boost -lpc -diff 2 27 6.90

2nd 179 -boost -fft -mah 2 27 6.90

2nd 180 -boost -lpc -eucl 2 27 6.90

2nd 181 -low -fft -randcl 3 26 10.34

2nd 182 -low -minmax -randcl 2 27 6.90

2nd 183 -boost -minmax -mah 2 27 6.90

2nd 184 -highpassboost -minmax -mah 2 27 6.90

2nd 185 -boost -randfe -cheb 2 27 6.90

2nd 186 -high -randfe -randcl 2 27 6.90

2nd 187 -highpassboost -minmax -cheb 2 27 6.90

2nd 188 -highpassboost -fft -mah 2 27 6.90

2nd 189 -boost -lpc -cheb 2 27 6.90

2nd 190 -boost -aggr -mah 2 27 6.90

2nd 191 -highpassboost -lpc -mink 2 27 6.90

2nd 192 -highpassboost -lpc -diff 2 27 6.90

2nd 193 -endp -lpc -randcl 1 28 3.45

Table 10.15: Consolidated results, Part 15.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 85

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 194 -highpassboost -lpc -eucl 2 27 6.90

2nd 195 -high -minmax -randcl 1 28 3.45

2nd 196 -highpassboost -lpc -cheb 2 27 6.90

2nd 197 -norm -fft -randcl 3 26 10.34

2nd 198 -band -aggr -randcl 1 28 3.45

2nd 199 -low -randfe -randcl 1 28 3.45

2nd 200 -boost -aggr -mink 2 27 6.90

2nd 201 -boost -aggr -diff 2 27 6.90

2nd 202 -endp -aggr -randcl 3 26 10.34

2nd 203 -boost -aggr -eucl 2 27 6.90

2nd 204 -boost -fft -mink 2 27 6.90

2nd 205 -boost -randfe -mah 2 27 6.90

2nd 206 -boost -fft -diff 2 27 6.90

2nd 207 -boost -fft -eucl 2 27 6.90

2nd 208 -highpassboost -randfe -mink 2 27 6.90

2nd 209 -highpassboost -randfe -diff 2 27 6.90

2nd 210 -boost -minmax -mink 2 27 6.90

2nd 211 -boost -minmax -diff 2 27 6.90

2nd 212 -highpassboost -randfe -eucl 2 27 6.90

2nd 213 -boost -minmax -eucl 2 27 6.90

2nd 214 -low -aggr -randcl 2 27 6.90

2nd 215 -band -fft -randcl 2 27 6.90

2nd 216 -boost -aggr -cheb 2 27 6.90

2nd 217 -band -randfe -randcl 2 27 6.90

2nd 218 -boost -fft -cheb 2 27 6.90

2nd 219 -highpassboost -aggr -mink 2 27 6.90

2nd 220 -highpassboost -aggr -diff 2 27 6.90

2nd 221 -highpassboost -fft -mink 2 27 6.90

2nd 222 -endp -minmax -randcl 2 27 6.90

2nd 223 -highpassboost -fft -diff 2 27 6.90

Table 10.16: Consolidated results, Part 16.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 86

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 224 -highpassboost -aggr -eucl 2 27 6.90

2nd 225 -highpassboost -randfe -cheb 2 27 6.90

2nd 226 -high -lpc -nn 2 27 6.90

2nd 227 -boost -minmax -cheb 2 27 6.90

2nd 228 -highpassboost -fft -eucl 2 27 6.90

2nd 229 -boost -lpc -mah 2 27 6.90

2nd 230 -norm -randfe -randcl 1 28 3.45

2nd 231 -highpassboost -aggr -cheb 2 27 6.90

2nd 232 -highpassboost -fft -cheb 2 27 6.90

2nd 233 -band -minmax -randcl 2 27 6.90

2nd 234 -boost -aggr -randcl 2 27 6.90

2nd 235 -highpassboost -lpc -mah 2 27 6.90

2nd 236 -highpassboost -aggr -mah 2 27 6.90

2nd 237 -high -lpc -randcl 1 28 3.45

2nd 238 -highpassboost -randfe -mah 2 27 6.90

2nd 239 -boost -randfe -mink 2 27 6.90

2nd 240 -boost -randfe -diff 2 27 6.90

2nd 241 -highpassboost -minmax -mink 2 27 6.90

2nd 242 -raw -randfe -randcl 0 29 0.00

2nd 243 -highpassboost -fft -randcl 1 28 3.45

2nd 244 -band -lpc -randcl 0 29 0.00

2nd 245 -endp -fft -randcl 0 29 0.00

2nd 246 -raw -fft -randcl 2 27 6.90

2nd 247 -norm -lpc -randcl 1 28 3.45

2nd 248 -highpassboost -randfe -randcl 1 28 3.45

2nd 249 -high -aggr -randcl 0 29 0.00

2nd 250 -band -randfe -mink 1 28 3.45

2nd 251 -low -lpc -randcl 2 27 6.90

2nd 252 -highpassboost -minmax -randcl 2 27 6.90

2nd 253 -norm -aggr -randcl 1 28 3.45

Table 10.17: Consolidated results, Part 17.

Guess Run # Configuration GOOD BAD Recognition Rate,%

2nd 254 -high -fft -randcl 3 26 10.34

2nd 255 -band -minmax -nn 1 28 3.45

2nd 256 -norm -minmax -randcl 1 28 3.45

Table 10.18: Consolidated results, Part 18.

Chapter 11

Applications

Revision : 1.18

This chapter describes the applications that employ MARF for one purpose or another. Most of them
are our own applications that demonstrate how to use various MARF’s features. Others are either research
or internal projects of their own. If you use MARF or its derivative in your application and would like to
be listed here, please let us know at marf-devel@sf.lists.net.

11.1 MARF Research Applications

11.1.1 SpeakerIdentApp - Text-Independent Speaker Identification Application

SpeakerIdentApp is an application for text-independent speaker identification that exercises the most of
the MARF’s features. SpeakerIdentApp is broadly presented through the rest of this manual.

11.1.2 Zipf’s Law Application

Revision : 1.16

Originally written on February 7, 2003.

11.1.2.0.1 The Program

11.1.2.0.2 Data Structures The main statistics “place-holder” is a oStats Hashtable, nicely pro-
vided by Java, which hashes by words as keys to other data structures, called WordStats. The WordStats

data structure contains word’s spelling, called lexeme (borrowed this term from compiler design), word’s
frequency (initially 0), and word’s rank (initially −1, i.e. unset). WordStats provides a typical variety
of methods to access and alter any of those three values. There is an array, called oSortedStatRefs,
which will eventually hold references to WordStats objects in the oStats hashtable in the sorted by the
frequency.

87

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 88

Hashtable entry might look like this in pseudo-notation:

{ <word> } -> [WordStats{ <word>, <f>, <r> }]

11.1.2.1 Mini User Manual

11.1.2.1.1 System Requirements The program was mostly developed under Linux, so there’s a
Makefile and a testing shell script to simplify some routine tasks. For JVM, any JDK 1.4.* and above
will do. bash would be nice to have to be able to run the batch script. Since the application itself is written
in Java, it’s not bound to specific architecture, thus may be compiled and run without the makefiles and
scripts on virtually any operating system.

11.1.2.1.2 How To Run It There are at least three ways how to run the program, listed in order of
complexity (in terms of number of learning and typing involved). In order for the below to work you’d
need some corpora in the same directory as the application.

11.1.2.1.3 Using the testing.sh Script The script is written using bash syntax; hence, bash should
be present. The script ensures that the program was compiled first, by invoking make, then in a for loop
feeds all the *.txt files (presumably our corpora) along with the ZipfLaw.java program itself to the
executable, one by one, and redirects its standard output to the files as <corpus-name>[<options>].log
in the current directory. These files will contain the grouping of the 100 most frequent words every 1000
words as well as frequency-of-frequency counts at the end.

Type:

./testing.sh

to run the batch through with the default settings.

./testing.sh <options>

to override the default settings with <options>. <options> are the same as that of the ZipfLaw application
(see 11.1.2.1.5).

11.1.2.1.4 Using Makefile If you want to build and to run the application just for individual, pre-set
corpora, use the make utility provided with UNIXen.

Type (assuming GNU-style make, or gmake):

make

to just compile the thing

make <corpus-name> [> <filename>.log]

to (possibly compile if not done yet) and run it for the corpus <corpus-name> and to optionally
redirect output to the file named <filename>.log The <corpus-name> are described in the Makefile

itself.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 89

make clean

to clean up the *.class and *.log files that happened to be generated and so on.

make run

is actually equivalent to running testing.sh with no options.

make report

to produce a PDF file out of the LATEX source of the report.

11.1.2.1.5 Running The ZipfLaw Application You can run the application itself without any
wrapping scripts and provide options to it. This is a command-line application, so there is no GUI
associated with it yet. To run the application you have to compile it first. You can use either make with
no arguments to compile or use the standard Java compiler.

make

or

javac -cp marf.jar:. ZipfLaw.java

After having compiled the thing, you can run it with the JVM. There is one required argument - either
corpus file to analyze or --help. If it’s a corpus, it may be accompanied with one or more options
overriding the default settings. Here are the options as per the application’s output:

Usage:

java ZipfLaw --help | -h | [OPTIONS] <corpus-file>

java ZipfLaw --list [OPTIONS] <corpus-file>

Options (one or more of the following):

--case - make it case-sensitive

--num - parse numerical values

--quote - consider quotes and count quoted strings as one token

--eos - make typical ends of sentences (<?>, <!>, <.>) significant

--nolog - dump Zipf’s law graph values as-is instead of log/log

--list - lists already pre-collected statistics for a given corpus

If the filename isn’t specified, that will be stated and the usage instructions above displayed. The
output filename generated from the input file name with the options (if any) pre-pended and it ends with
the extension of .csv, which can directly be opened by OpenOffice Calc or Microsoft Excel.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 90

11.1.2.2 Experiments

Various experiments on diverse corpora were conducted to find out whether Zipf’s Law can possibly fail.
For that purpose I used the following corpora:

• a technical white paper of Dr. Probst ([Pro95]) of 20k in size, the filename is multiprocessor.txt

• three ordinary corpora (non-technical literature) ([Cra, Joy, ebTW]) – grfst10.txt, 853k; ulysses.txt,
1.5M; and hwswc10.txt, 271k

• my personal mailbox in UNIX format, raw as is, 5.5M

• the source code of this application itself, ZipfLaw.java, 8.0k

11.1.2.2.1 Default Setup This is very simplistic approach in the application, where everything but
a letter (26 caps, and 26 lowercase) is a blank, and as such is discarded. All the words were folded to the
lower case as well. This default setup can be overridden by specifying the command-line options described
above.

11.1.2.2.2 Extreme Setup One of the option combinations, that makes the program case-sensitive,
considers the numbers, and treats “!”, “.”, and “?” as special tokens.

11.1.2.3 Results

We failed to prove Zipf wrong. With any of the corpora and the settings. Further, the log/log graphs of
the frequency and the rank for the default and the extreme setup are provided. The graphs don’t change
very much in shape. For other option combinations, the graphs are not provided since they don’t vary
much. It turned out to be the that capitalization, end of sentence symbols, and numbers, if treated as
tokens, don’t make much of a difference, as if they simply aren’t there.

In the distribution archive, you will find the *.log and *.csv files of the test runs, which contain the
described statistics. You are welcome to do make clean and re-run the tests on your own. NOTE, by
default the output goes to the standard output, so it’s a good idea to redirect it to a file especially if a
corpus is a very large one.

11.1.2.3.1 Graphs, The Default Setup

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 91

Figure 11.1: Zipf’s Law for the “Greifenstein” corpus with the default setup.

Figure 11.2: Zipf’s Law for the “How to Speak and Write Correctly” corpus with the default setup.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 92

Figure 11.3: Zipf’s Law for my 5.6 Mb INBOX with the default setup.

Figure 11.4: Zipf’s Law for the white paper “The United States Needs a Scalable Shared-Memory Multi-
processor, But Might Not Get One!” with the default setup.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 93

Figure 11.5: Zipf’s Law for the “Ulysses” corpus with the default setup.

Figure 11.6: Zipf’s Law for the “ZipfLaw.java” program itself with the default setup.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 94

Figure 11.7: Zipf’s Law for the “Greifenstein” corpus with the extreme setup.

11.1.2.3.2 Graphs, The Extreme Setup

11.1.2.4 Conclusions

Zipf’s Law holds so far. However, more experimentation is required, for example, other punctuation
characters than that ending a sentence were not considered. Then other languages than English is a good
area to explore as well.

11.1.3 Language Identification Application

Revision : 1.28

Originally written on March 17, 2003.

11.1.3.1 The Program

The Mini-User Manual is provided in the Section 11.1.3.10. The source is provided in the electronic form
only from the release tarballs or the CVS repository.

NOTE: in the code there are a lot of files. Not all of them might be of a great interest to you since
some of them are stubs right now and don’t provide much functionality in them or the functionality is not
linked anyhow to the main application. These files are:

./marf/nlp/Collocations:

ChiSquareTest.java

CollocationWindow.java

TTest.java

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 95

Figure 11.8: Zipf’s Law for the “How to Speak and Write Correctly” corpus with the extreme setup.

Figure 11.9: Zipf’s Law for my 5.6 Mb INBOX with the extreme setup.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 96

Figure 11.10: Zipf’s Law for the white paper “The United States Needs a Scalable Shared-Memory Mul-
tiprocessor, But Might Not Get One! with the extreme setup

Figure 11.11: Zipf’s Law for the “Ulysses” corpus with the extreme setup.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 97

Figure 11.12: Zipf’s Law for the “ZipfLaw.java” program itself with the extreme setup.

./marf/Stats/StatisticalEstimators:

GLI.java

KatzBackoff.java

SLI.java

./marf/util/comparators:

RankComparator.java

./marf/nlp/Stemming:

StemmingEN.java

Stemming.java

11.1.3.2 Hypotheses

11.1.3.2.1 Identifying Non-Latin-Script-Based Languages The methodology, if implemented
correctly, should work for natural languages that use non-Latin scripts for their writing. Of course,
to test this, such scripts will have to be romanized (either transcribed or transliterated using Latin, more
precisely, ASCII characters).

11.1.3.2.2 Identifying Programming Languages I have thought of if the proposed methodology
works well for natural languages, it would probably work at least as good for the programming languages.

11.1.3.2.3 Sophisticated Statistical Estimators Should Work Better “Good” (or “better” if
you will) statistical estimators presented in Chapter ?? should give better results (higher language recog-
nition rate) over simpler ones. By “simpler” we mean the MLE and Add-* family. By more sophisticated
we mean Witten-Bell, Good-Turing, and the combination of the Statistical Estimators.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 98

11.1.3.2.4 Zipf’s Law Can Also Be Effective in Language Identification Zipf’s Law can be
reasonably effective and very “cheap” in language identification task. This one is yet to be verified.

11.1.3.3 Initial Experiments Setup

11.1.3.3.1 Languages Several natural and programming languages in were used in the experiments.

Natural Lanugages (NLs)

• English (en - ISO 2-letter code code [iso])

• French (fr, desaccented)

• Spanish (es, desaccented)

• Italian (it)

• Arabic (ar, transcribed in ASCII according to the qalam rules [Hed92])

• Hebrew (he, transcribed in ASCII)

• Bulgarian (bg, transcribed in ASCII)

• Russian (ru, transcribed in ASCII)

Programming Languages (PLs)

• C/C++ (together, since C is a proper subset of C++)

• Java

• Perl

Statistical Estimators Implemented

• MLE in MLE

• Add-One in AddOne

• Add-Delta (ELE) in AddDelta

• Witten-Bell in WittenBell

• Good-Turing in GoodTuring

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 99

N-gram Models

• Unigram

• Bigram

• Trigram

11.1.3.3.2 Corpora

English The English language corpora is (not very surprisingly) was the biggest one. To simplify the
training process, we combined them all in one file en.txt. It includes [Pro95, Joy, Cra, ebTW, Cle49,
AriBC, Cha80, Def, tbWCM82, tbEF]. Additionally, a few chapters of “The Little Prince”. Total size of
the combined file is 7Mb.

French For French we used few chapters of “Le Petit Prince”. The totals combined size is 12k, fr.txt.

Spanish Like the French corpora, the Spanish one includes several chapters of “Le Petit Prince” in
Spanish (from the same source). The total size is 12k, es.txt.

Arabic We have compiled a few surah from transliterated Quran ([mus]) as well as a couple of texts
transcribed by Michelle Khalifé from a proverb [AP] and a passage from a newspaper in Arabic [tbMK].
Total size: 208k, ar.txt.

Hebrew We used a few poems written by their author ([Fuh]) in ASCII alphabet. Total size is 37k,
he.txt.

Russian Latinized classics (one whole book) was used (see [Aks87]). Total size is 877k, ru.txt.

Bulgarian A few transcribed poems were used for training from [ec]. Total size: 21k, bg.txt.

Italian We used the “Pinocchio” book [(Co] of the size of 245k, it.txt.

C/C++ Various .c and .cpp files were used from a variety of projects and examples for the “COMP444
- System Software Design”, “COMP471 - Computer Graphics”, “COMP361”, and “COMP229 - System
Software courses”. The total size is 137k, cpp.txt.

Java As Java “corpora” we used the sources of this application at some point in the development cycle
and source files for the MARF project itself. The total size is 260k, java.txt.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 100

Perl For Perl, we used many of Serguei’s scripts written to help with marking of assignments and accept
electronic submissions as well as a couple tools for CVS written in Perl from the Internet (Google keywords:
cvs2cl.pl and cvs2html.pl). Size: 299k, perl.txt.

11.1.3.4 Methodology

11.1.3.4.1 Add-Delta Family Add-Delta is defined as:

P (ngram) =
Cngram+δ

N+δ·V

where V is a vocabulary size, N is the number of n-grams that start with ngram. By implementing this
general Add-Delta smoothing we get MLE, ELE, and Add-One “for free” as special cases of Add-Delta:

• δ = 0 is MLE

• δ = 1 is Add One

• δ = 0.5 is ELE

11.1.3.4.2 Witten-Bell and Good Turing These two estimators were implemented as given in
hopes to get a better recognition rate over the Add-Delta family.

11.1.3.5 Difficulties Encountered

During the experimentations we faced several problems, some of which are worth mentioning.

11.1.3.5.1 “Bag-of-Languages” and Alphabets From this point now on, by an alphabet in this
document we mean something more than what people understand by the language alphabet. In our
case an alphabet may include characters other than letters, such as numbers, punctuation, even a blank
sometimes, all being derived from a training corpus.

Initially, we attempted to treat programming languages as if they were natural ones. That way, from
the developer’s standpoint we deal with them all uniformly. This assumption could be viewed as cheating
to some extent however because programming languages have a lot larger alphabets that are necessary
lexical parts of the language in addition to the statements written using ASCII letters. Therefore, this
gives a lot of discriminatory power as compared to the NLs when these characters are inputted by an
user. Treating PLs as using only ASCII Latin base should lead to a lot of confusion with English (and
sometimes other NLs) because most of the keywords are English words in addition to literal text strings
and comments present within the code.

Among NLs that were transcribed or transliterated in Latin there are alphabetical differences. For
instance, in Arabic there are three h-like sounds that have no English equivalent, so sometimes numbers 3,
7, and 5 are used for that purpose (or in more standard LAiLA notation [Hed92] capitals are used instead.
To be more fair to others, we let numerals to be a part of the alphabet as well. Analogous problem existed

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 101

when using capitals for different sounds as opposed to direct lowercase transliteration in Arabic making
lowercasing a not necessarily good idea.

Russian and Bulgarian (transcribed from Cyrillic scripts) use (’) and some other symbols (like ([) or (])
in Bulgarian) to represent certain letters or sounds; hence, they always have to be a part of the alphabet.
This has caused some problems again, and I thought of another separation that is needed: Latin-based,
Cyrillic-based, and Semitic-based languages, and our “bag-of-languages” approach might no do so well.
(We, however, just split PLs, Latin-based and non-Latin as the end result.)

Even for Latin-based languages that can be a problem. For example, the letter k does not exist in
Spanish or Italian (it may if referred to the foreign words, such as “kilogram” or proper names but is not
used otherwise). So are w and x and maybe some others. The same with French – the letters k and w are
very rare (so they didn’t happen to be in “Le Petit Prince” corpus used, for example).

11.1.3.5.2 Alphabet Normalization We do get different alphabet sizes of my corpora for a language.
The alphabets are derived from the corpora themselves, so depending on the size some characters that
appear in one corpora might not appear in another. Thus, when we perform classification task for a given
sentence, the models compared may be with differently-sized alphabets thereby returning a probability of
0.0 for the n-gram’s characters that have not been present yet in a given trained model. This can be viewed
as a non-uniform smoothing of the models and implies necessity of the normalization of the alphabets of
all the language models after accounting for n-grams has been made, and only then smooth.

Language model normalization in has not been implemented yet. Such normalization, however, will
provoke a problem of data sparseness similar to the one described below. This presents a problem for
smoothing techniques, because some counts we get, N of either n-grams or (n-1)-grams, will have values
of 0.0 and division by 0.0 will become a problem.

11.1.3.5.3 N-grams with n > 2 The implemented maximum so far is n = 3, but it is a general
problem for any n. The problem stems from the excessive data sparseness of the models for n > 2. Taking
for example MLE — it won’t be able to cope with it properly without special care because N there is
now a two-dimensional matrix, which can easily be 0.0 in places and the division by zero is unavoidable.
Analogous problem exists in the Good-Turing smoothing. To solve this we have said if N = 0 make N = 1.
Maybe by doing so (as this is a quite a kludge) we have created more trouble, but that was the “design
decision” in the first implementation.

11.1.3.6 Experiments

11.1.3.6.1 Bag-of-Languages and the Language Split We came up with a few testing sentences/statements
for all languages (can be found in the test.langs file, see Figure 11.13). Then, based on my random
observations above we conducted more guided experiments.

The sentences from the Figure 11.13 were used as-is to pipe to the program for classification for
the bag-of-languages approach. This file has been split into parts (see Figure 11.14, Figure 11.15, and
Figure 11.16) to try out other approaches as well (see Section 11.1.3.7).

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 102

Note, the sentences below do not necessarily convey any meaning or information of interest;

they are here just for testing purposes including this one :-).

Esta noche salimos juntos a la fiesta.

We should abolish microprocessor use.

Shla Sasha po shosse i sosala sushku

Mon amour, tu me manques tellement beaucoup.

Buduchi chelovekom s borodoi let Misha slegka posgatyvalsya posle burnoi p’yanki s druz’yami

Te amo y te quiero muchisimo

troyer krekhtst in harts er.

Un burattino Pinocchio

chou habbibi

Na gara s nepoznato ime i lampi s mqtna svetlina

class foo extends bar

#include <foo.h>

cout << a;

vos makhn neshome farvundert

public interface doo

use strict;

Wa-innaka laAAala khuluqin AAatheemin

sub foo

etim letom mimiletom lyudi edut kto kuda

avant avoir capote mon ordi est devenu vraiment fou

ishtara jeha aacharat hamir

the assignment is due tomorrow, n’est-ce pas?

Figure 11.13: Sample sentences in various languages used for testing. Was used in “Bag-of-Languages”
experiments.

Note, the sentences below does not necessarily convey any meaning or information of interest;

they are here just for testing purposes including this one :-).

Esta noche salimos juntos a la fiesta.

We should abolish microprocessor use.

Mon amour, tu me manques tellement beaucoup.

Te amo y te quiero muchisimo

Un burattino Pinocchio

avant avoir capote mon ordi est devenu vraiment fou

the assignment is due tomorrow, n’est-ce pas?

Figure 11.14: Subset of the sample sentences in languages with Latin base.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 103

Shla Sasha po shosse i sosala sushku

Buduchi chelovekom s borodoi let Misha slegka posgatyvalsya posle burnoi p’yanki s druz’yami

troyer krekhtst in harts er.

chou habbibi

Na gara s nepoznato ime i lampi s mqtna svetlina

vos makhn neshome farvundert

Wa-innaka laAAala khuluqin AAatheemin

etim letom mimiletom lyudi edut kto kuda

ishtara jeha aacharat hamir

Figure 11.15: Subset of the sample sentences in languages with non-Latin base.

class foo extends bar

#include <foo.h>

cout << a;

public interface doo

use strict;

sub foo

Figure 11.16: Subset of the sample statements in programming languages.

11.1.3.6.2 Tokenization We used two types of tokenizer, restricted and unrestricted to exper-
iment with the diverse alphabets. The “restricted tokenizer” means lowercase-folded ASCII characters
and numbers (more corresponding to the original requirements). The “unrestricted tokenizer” means
additional characters are allowed and it is case-sensitive. In both tokenizers blanks are discarded. An
implementation of these tokenizer settings via command-line options is still a TODO, so we were simply
changing the code and recompiling. The code has an unrestricted tokenizer (NLPStreamTokenizer.java
under marf/nlp/util).

11.1.3.7 Training

We trained language models to include the following:

• all the languages (both NLs and PLs) with the restricted tokenizer

• all the languages with the unrestricted tokenizer

• latin-based NLs (English, French, Spanish, and Italian) with the restricted tokenizer

• non-latin-based romanized NLs (Arabic, Hebrew, Russian, and Bulgarian) with the unrestricted
tokenizer

• PLs (Java, C/C++, Perl) with the unrestricted tokenizer.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 104

11.1.3.8 Results

11.1.3.8.1 Brief Summary (Brief because there’s more elaborate Conclusion section).

So far, the results are good in places, sometimes pitiful. Trigrams alone generally were very poor and
slow for us. Unigrams and bigrams performed quite well, however.

More detailed results can be observed in the Appendix 11.1.3.12. Below are the numbers as a recog-
nition rate of the sentences presented earlier for every language model. Note that numbers by themselves
may not convey enough information, one has to look at the detailed results further to actually realize that
the number of samples is debatable to be good and so are the training corpora is not uniform. One might
also want to look which languages get confused with each other.

11.1.3.8.2 Summary of Recognition Rates Language Model:

• “Bag-of-Languages”

• Unrestricted tokenizer

unigram bigram trigram

MLE 54.17% 16.67% 16.67%

add-delta (ELE) 58.33% 12.50% 16.67%

add-one 58.33% 12.50% 16.67%

Witten-Bell 16.67% 29.17% 16.67%

Good-Turing 16.67% 12.50% 16.67%

Language Model:

• NLs transcribed in ASCII (Arabic, Hebrew, Bulgarian, and Russian)

• Unrestricted tokenizer

unigram bigram trigram

MLE 66.67% 33.33% 33.33%

add-delta (ELE) 77.78% 11.11% 55.56%

add-one 77.78% 11.11% 55.56%

Witten-Bell 55.56% 66.67% 33.33%

Good-Turing 55.56% 55.56% 55.56%

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 105

Language Model:

• PLs only (C/C++, Java, and Perl)

• Unrestricted tokenizer

unigram bigram trigram

MLE 33.33% 33.33% 33.33%

add-delta (ELE) 33.33% 50.00% 33.33%

add-one 33.33% 50.00% 33.33%

Witten-Bell 33.33% 50.00% 33.33%

Good-Turing 33.33% 33.33% 33.33%

Language Model:

• Latin-based Langauges only (English, French, Spanish, and Italian)

• Restricted tokenizer

unigram bigram trigram

MLE 77.78% 33.33% 44.44%

add-delta (ELE) 77.78% 44.44% 55.56%

add-one 77.78% 55.56% 55.56%

Witten-Bell 44.44% 44.44% 44.44%

Good-Turing 44.44% 44.44% 55.56%

Language Model:

• “Bag-of-Languages”

• Restricted tokenizer

unigram bigram trigram

MLE 62.50% 16.67% 16.67%

add-delta (ELE) 62.50% 4.17% 12.50%

add-one 62.50% 8.33% 12.50%

Witten-Bell 16.67% 33.33% 16.67%

Good-Turing 16.67% 20.83% 25.00%

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 106

11.1.3.9 Conclusions

11.1.3.9.1 Concrete Points

• The best results we’ve got so far from simpler language models; especially using languages with the
Latin base only.

• The methodology did work for non-Latin languages as well. Not 100% of the time, but around 60%,
but this is a start.

• Witten-Bell and Good-Turing performed rather poorly in our tests in general. We think we need a
lot larger corpora to test out Witten-Bell and Good-Turing smoothing more thoroughly. This can be
confirmed by some of the results where Good-Turing gave us all English and English is the biggest
corpus we’ve got.

• Identification of the Latin-based languages among themselves was the best one. It worked OK in
the bag-of-languages approach.

• The strict tokenizer and bag-of-languages were surprisingly good (or at least better than we ex-
pected).

• Recognition of the programming languages according to the conducted experiments can be qualified
as “so-so” when PLs are compared to each other only. They were recognized slightly better in the
bag-of-languages approach (due to the larger alphabets).

11.1.3.9.2 Generalities Some of the hypotheses didn’t hold (“better techniques would do better” and
“PLs can be identified as easily as NLs”), some didn’t have time allotted to them yet (“try out Zipf’s Law
for the purpose of the language identification”).

In the next releases, we want to experiment with more things, for example, cross-validation and
held-out estimation as well as linear interpolations and Katz Backoff.

11.1.3.10 Mini User Manual

11.1.3.10.1 System Requirements The application was primarily developed under Linux, so there’s
a Makefile and a testing shell script to simplify some routine tasks. For JVM, any JDK 1.4.* and above
will do. tcsh would be nice to have to be able to run the batch script. Since the application itself is written
in Java, it’s not bound to specific architecture, thus may be compiled and run without the makefiles and
scripts on virtually any operating system.

11.1.3.10.2 How To Run It In order for the below to work you’d need some corpora in the same
directory as the application. (Check the reference section for the corpora used in the experiments.) There
are thousands of ways how to run the program. Some of them are listed below.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 107

11.1.3.10.3 Using the Shell Scripts There are two scripts out there – training.sh and testing.sh.
The former is used to do batch training on all the languages and all the models, the latter to perform
batch-testing of the models. They hide the complexity of typing many options to the users. If you are
ever to use them, tweak them appropriately for the specific languages and n-gram models if you don’t all
all-or-nothing testing.

The scripts are written using the tcsh syntax; hence, tcsh should be present. The scripts ensure that
the program was compiled first, by invoking make, then in several for() loops feed all the options and
filenames to the application.

Type:

./training.sh

to train the models.

./testing.sh

to test the models. NOTE: to start testing right away, you need the *.gzbin files (pre-trained models)
which should be copied from a training-* directory of your choice to the application’s directory.

11.1.3.10.4 Running The LangIdentApp Application You can run the application itself without
any wrapping scripts and provide options to it. This is a command-line application, so there is no GUI
associated with it yet (next release). To run the application you have to compile it first. You can use
either make with no arguments to compile or use a standard Java compiler.

make

or

javac -cp marf.jar:. LangIdentApp.java

After having compiled the application, you can run it with the JVM. There are several required
options:

• -char makes sure we deal with characters instead of strings of characters as a part of an n-gram

• one of the statistical estimators (see below); if none present, it won’t pick any default one

• language parameter (it may seem awkward to require it for identification, but this will fixed, so
for now use anything for it, like “foo”). Thus, the “language” is a typically two-to-four letter
abbrieviation of the language you are trying to train on (w.g. “en”, “es”, “java”, etc.).

• corpus - a path to the corpus file for training. For testing just use “bar”.

If you want an interactive mode to enter sentences yourself, use the -interactive option. E.g.:

java -cp marf.jar:. LangIdentApp --ident -char -interactive -bigram -add-delta foo bar

Here are the options as per the application’s output:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 108

Language Identification Application, $Revision: 1.2 $, $Date: 2007/01/01 23:09:16 $

Serguei A. Mokhov, mokhov@cs.concordia.ca

March 2003 - 2007

Usage:

java LangIdentApp --help | -h

java LangIdentApp --version

java LangIdentApp --train [--debug] [OPTIONS] <language> <corpus-file>

java LangIdentApp --ident [--debug] [OPTIONS] foo <bar|corpus-file>

Options (one or more of the following):

-interactive interactive mode for classification instead of reading from a file

-char use characters as n-grams (should always be present for this app)

-unigram use UNIGRAM model

-bigram use BIGRAM model

-trigram use TRIGRAM model

-mle use MLE

-add-one use Add-One smoothing

-add-delta use Add-Delta (ELE, d=0.5) smoothing

-witten-bell use Witten-Bell smoothing

-good-turing use Good-Turing smoothing

If the filename isn’t specified, that will be stated and the usage instructions above displayed.

11.1.3.11 List of Files

11.1.3.11.1 Directories

• marf/nlp – that’s where most of the code is for for use by this application, the marf.nlp package.
As discussed at the beginning, it has all the possible implementation files, but some of them are just
unimplemented stubs.

• index/ – this directory contains indexing of file names of corpora per language (see Section 11.1.3.11.2)

• test/ – this directory contains testing files with sentences in various languages for testing (see
Section 11.1.3.11.6)

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 109

• expected/ – this directory contains expected output files for classification (see Section 11.1.3.11.3)

• training-*/ – these directories contain all pre-trained models by us for the described experiments
and will be supplied in the training-sets tarballs.

11.1.3.11.2 Corpora per Language The below is the list of files of “pointers” to the training corpora
for the corresponding languages.

ar.train.corpora

bg.train.corpora

cpp.train.corpora

en.train.corpora

es.train.corpora

fr.train.corpora

he.train.corpora

it.train.corpora

java.train.corpora

perl.train.corpora

ru.train.corpora

11.1.3.11.3 Expected Results The below files present the ideal results of batch identification that
correspond the test.*.langs files below, and can be compared to those produced by the testing.sh

script.

expected.langs

expected.latin.langs

expected.non-latin.langs

expected.pls.langs

11.1.3.11.4 Application The application and its makefile.

LangIdentApp.java

Makefile

marf.jar

11.1.3.11.5 Scripts The wrapper scripts for batch training and testing.

testing.sh

training.sh

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 110

11.1.3.11.6 Test Sentences

• test.langs — the bag-of-languages

• test.latin.langs — English, French, Spanish, and Italian sentences

• test.non-latin.langs — Arabic, Hebrew, Russian, and Bulgarian sentences

• test.pls.langs — Programming Languages (a few statements in C++, Java, and Perl)

11.1.3.12 Classification Results

11.1.3.12.1 “Bag-of-Languages”, Unrestricted Tokenizer

UNIGRAM, ADD-DELTA UNIGRAM, ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [ru] 4 Language identified: [ru] Language identified: [ru] 4

Language identified: [fr] Language identified: [fr] 5 Language identified: [fr] Language identified: [fr] 5

Language identified: [ru] Language identified: [ru] 6 Language identified: [ru] Language identified: [ru] 6

Language identified: [es] Language identified: [es] 7 Language identified: [es] Language identified: [es] 7

Language identified: [he] Language identified: [he] 8 Language identified: [he] Language identified: [he] 8

Language identified: [it] Language identified: [it] 9 Language identified: [it] Language identified: [it] 9

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [bg] 10 Language identified: [bg] Language identified: [bg] 10

Language identified: [java] Language identified: [es] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [he] Language identified: [he] 11 Language identified: [he] Language identified: [he] 11

Language identified: [java] Language identified: [it] Language identified: [java] Language identified: [it]

Language identified: [perl] Language identified: [cpp] Language identified: [perl] Language identified: [cpp]

Language identified: [ar] Language identified: [ar] 12 Language identified: [ar] Language identified: [ar] 12

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [es]

Language identified: [ru] Language identified: [ru] 13 Language identified: [ru] Language identified: [ru] 13

Language identified: [fr] Language identified: [it] Language identified: [fr] Language identified: [it]

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [bg]

Language identified: [en] Language identified: [en] 14 Language identified: [en] Language identified: [en] 14

Total 24 14 Total 24 14

% 58.33 % 58.33

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 111

UNIGRAM, GOOD-TURING UNIGRAM, MLE

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [fr] 4

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ru] 5

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 6

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [he] 7

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [it] 8

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [bg] 9

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [perl]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [he] 10

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [it]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [cpp]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 11

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [es]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ru] 12

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [it]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [bg]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 13

Total 24 4 Total 24 13

% 16.67 % 54.17

UNIGRAM, WITTEN-BELL BIGRAM, ADD-DELTA

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [bg]

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [fr]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 1

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [bg]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [fr] 2

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [fr]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [bg]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [fr]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [fr]

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [es]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [fr]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [cpp] 3

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [bg]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [fr]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [es]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [bg]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [fr]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [es]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [bg]

Total 24 4 Total 24 3

% 16.67 % 12.50

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 112

BIGRAM,ADD-ONE BIGRAM, GOOD-TURING

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [fr] Language identified: [en] Language identified: [perl]

Language identified: [es] Language identified: [es] 1 Language identified: [es] Language identified: [perl]

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [perl]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [perl]

Language identified: [fr] Language identified: [fr] 2 Language identified: [fr] Language identified: [perl]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [perl]

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [perl]

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [perl]

Language identified: [it] Language identified: [fr] Language identified: [it] Language identified: [perl]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [perl]

Language identified: [bg] Language identified: [es] Language identified: [bg] Language identified: [perl]

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [cpp] 3 Language identified: [cpp] Language identified: [perl]

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [perl]

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [perl]

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [perl] 2

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [perl]

Language identified: [perl] Language identified: [fr] Language identified: [perl] Language identified: [perl] 3

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [perl]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [perl]

Language identified: [ar] Language identified: [es] Language identified: [ar] Language identified: [perl]

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [perl]

Total 24 3 Total 24 3

% 12.50 % 12.50

BIGRAM, MLE BIGRAM, WITTEN-BELL

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [java]

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [java]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 1

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [java]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [java]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [java]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [ar]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [ar]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [it] 2

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 3

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [java]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [cpp] 4

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [ru]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [java] 5

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [ru]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 6

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [java]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ar]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [java]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 7

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [java]

Total 24 4 Total 24 7

% 16.67 % 29.17

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 113

TRIGRAM, ADD-DELTA TRIGRAM, ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [he]

Language identified: [en] Language identified: [fr] Language identified: [en] Language identified: [fr]

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [he]

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [he]

Language identified: [fr] Language identified: [fr] 1 Language identified: [fr] Language identified: [fr] 1

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [he]

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [fr]

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [ar]

Language identified: [it] Language identified: [fr] Language identified: [it] Language identified: [fr]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [fr]

Language identified: [bg] Language identified: [fr] Language identified: [bg] Language identified: [fr]

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [fr]

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [java]

Language identified: [he] Language identified: [he] 2 Language identified: [he] Language identified: [he] 2

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [fr]

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [es]

Language identified: [ar] Language identified: [ar] 3 Language identified: [ar] Language identified: [ar] 3

Language identified: [perl] Language identified: [fr] Language identified: [perl] Language identified: [fr]

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [ar]

Language identified: [fr] Language identified: [fr] 4 Language identified: [fr] Language identified: [fr] 4

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [fr]

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [he]

Total 24 4 Total 24 4

% 16.67 % 16.67

TRIGRAM, GOOD-TURING TRIGRAM, MLE

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [ar] Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [ar] Language identified: [fr] Language identified: [en]

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [en]

Language identified: [es] Language identified: [ar] Language identified: [es] Language identified: [en]

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [he] Language identified: [it] Language identified: [en]

Language identified: [ar] Language identified: [ar] 1 Language identified: [ar] Language identified: [en]

Language identified: [bg] Language identified: [es] Language identified: [bg] Language identified: [en]

Language identified: [java] Language identified: [ru] Language identified: [java] Language identified: [en]

Language identified: [cpp] Language identified: [ar] Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [ar] Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [he] 2 Language identified: [he] Language identified: [en]

Language identified: [java] Language identified: [he] Language identified: [java] Language identified: [en]

Language identified: [perl] Language identified: [ar] Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [ar] 3 Language identified: [ar] Language identified: [en]

Language identified: [perl] Language identified: [ar] Language identified: [perl] Language identified: [en]

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [he] Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [en]

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [en] 4

Total 24 4 Total 24 4

% 16.67 % 16.67

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 114

TRIGRAM, WITTEN-BELL

Ideal Actual Match

Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en]

Language identified: [ru] Language identified: [en]

Language identified: [es] Language identified: [en]

Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [bg] Language identified: [en]

Language identified: [java] Language identified: [en]

Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [en]

Language identified: [java] Language identified: [en]

Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [perl] Language identified: [en]

Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [ar] Language identified: [en] 4

Total 24 4

% 16.67

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 115

11.1.3.12.2 Non-Latin-Based Languages, Unrestricted Tokenizer

UNIGRAM, ADD-DELTA UNIGRAM, ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [ru] 1 Language identified: [ru] Language identified: [ru] 1

Language identified: [ru] Language identified: [ru] 2 Language identified: [ru] Language identified: [ru] 2

Language identified: [he] Language identified: [he] 3 Language identified: [he] Language identified: [he] 3

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [bg] 4 Language identified: [bg] Language identified: [bg] 4

Language identified: [he] Language identified: [he] 5 Language identified: [he] Language identified: [he] 5

Language identified: [ar] Language identified: [ar] 6 Language identified: [ar] Language identified: [ar] 6

Language identified: [ru] Language identified: [ru] 7 Language identified: [ru] Language identified: [ru] 7

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [bg]

Total 9 7 Total 9 7

% 77.78 % 77.78

UNIGRAM, GOOD-TURING UNIGRAM, MLE

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [ru] 1 Language identified: [ru] Language identified: [bg]

Language identified: [ru] Language identified: [ru] 2 Language identified: [ru] Language identified: [ru] 1

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [he] 2

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [bg] 3 Language identified: [bg] Language identified: [bg] 3

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [he] 4

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [ar] 5

Language identified: [ru] Language identified: [ru] 5 Language identified: [ru] Language identified: [ru] 6

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [bg]

Total 9 5 Total 9 6

% 55.56 % 66.67

UNIGRAM, WITTEN-BELL BIGRAM, ADD-DELTA

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [ru] 1 Language identified: [ru] Language identified: [bg]

Language identified: [ru] Language identified: [ru] 2 Language identified: [ru] Language identified: [bg]

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [bg]

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [bg]

Language identified: [bg] Language identified: [bg] 3 Language identified: [bg] Language identified: [bg] 1

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [bg]

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [bg]

Language identified: [ru] Language identified: [ru] 5 Language identified: [ru] Language identified: [bg]

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [bg]

Total 9 5 Total 9 1

% 55.56 % 11.11

BIGRAM, ADD-ONE BIGRAM, GOOD-TURING

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [ru] 1

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [ru] 2

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [ar]

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [ar]

Language identified: [bg] Language identified: [bg] 1 Language identified: [bg] Language identified: [bg] 3

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [ar] 4

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [ru] 5

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [ru]

Total 9 1 Total 9 5

% 11.11 % 55.56

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 116

BIGRAM, MLE BIGRAM, WITTEN-BELL

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [ru] 1 Language identified: [ru] Language identified: [ru] 1

Language identified: [ru] Language identified: [ru] 2 Language identified: [ru] Language identified: [ru] 2

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [ar]

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ar] 3

Language identified: [bg] Language identified: [ru] Language identified: [bg] Language identified: [bg] 4

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ar] 5

Language identified: [ru] Language identified: [ru] 3 Language identified: [ru] Language identified: [ar]

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ar] 6

Total 9 3 Total 9 6

% 33.33 % 66.67

TRIGRAM, ADD-DELTA TRIGRAM, ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [he]

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [he]

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [ar]

Language identified: [ar] Language identified: [ar] 1 Language identified: [ar] Language identified: [ar] 1

Language identified: [bg] Language identified: [bg] 2 Language identified: [bg] Language identified: [bg] 2

Language identified: [he] Language identified: [he] 3 Language identified: [he] Language identified: [he] 3

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [ar] 4

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [ar]

Language identified: [ar] Language identified: [ar] 5 Language identified: [ar] Language identified: [ar] 5

Total 9 5 Total 9 5

% 55.56 % 55.56

TRIGRAM, GOOD-TURING TRIGRAM, MLE

Ideal Actual Match Ideal Actual Match

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [ru] 1

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [ru] 2

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [ar] 1 Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [bg] 2 Language identified: [bg] Language identified: [ru]

Language identified: [he] Language identified: [he] 3 Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [ru]

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [ru] 3

Language identified: [ar] Language identified: [ar] 5 Language identified: [ar] Language identified: [ru]

Total 9 5 Total 9 3

% 55.56 % 33.33

TRIGRAM, WITTEN-BELL

Ideal Actual Match

Language identified: [ru] Language identified: [ru] 1

Language identified: [ru] Language identified: [ru] 2

Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [ru]

Language identified: [he] Language identified: [ru]

Language identified: [ar] Language identified: [ru]

Language identified: [ru] Language identified: [ru] 3

Language identified: [ar] Language identified: [ru]

Total 9 3

% 33.33

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 117

11.1.3.12.3 Programming Languages, Unrestricted Tokenizer

UNIGRAM,ADD-DELTA UNIGRAM,ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [java] 1 Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [java] Language identified: [java] 2 Language identified: [java] Language identified: [java] 2

Language identified: [perl] Language identified: [cpp] Language identified: [perl] Language identified: [cpp]

Language identified: [perl] Language identified: [cpp] Language identified: [perl] Language identified: [cpp]

Total 6 2 Total 6 2

% 33.33 % 33.33

UNIGRAM,GOOD-TURING UNIGRAM,MLE

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [java] Language identified: [java] 1 Language identified: [java] Language identified: [java] 2

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [cpp]

Language identified: [perl] Language identified: [perl] 2 Language identified: [perl] Language identified: [cpp]

Total 6 2 Total 6 2

% 33.33 % 33.33

UNIGRAM,WITTEN-BELL BIGRAM,ADD-DELTA

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [cpp] 1

Language identified: [java] Language identified: [java] 1 Language identified: [java] Language identified: [perl]

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [perl] 2

Language identified: [perl] Language identified: [perl] 2 Language identified: [perl] Language identified: [perl] 3

Total 6 2 Total 6 3

% 33.33 % 50.00

BIGRAM,ADD-ONE BIGRAM,GOOD-TURING

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [perl]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [cpp] 1 Language identified: [cpp] Language identified: [perl]

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [perl]

Language identified: [perl] Language identified: [perl] 2 Language identified: [perl] Language identified: [perl] 1

Language identified: [perl] Language identified: [perl] 3 Language identified: [perl] Language identified: [perl] 2

Total 6 3 Total 6 2

% 50.00 % 33.33

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 118

BIGRAM,MLE BIGRAM,WITTEN-BELL

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [java] 1 Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [cpp] 2

Language identified: [java] Language identified: [java] 2 Language identified: [java] Language identified: [java] 3

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [java]

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [java]

Total 6 2 Total 6 3

% 33.33 % 50.00

TRIGRAM,ADD-DELTA TRIGRAM,ADD-ONE

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [java] 1 Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [java] Language identified: [cpp] Language identified: [java]

Language identified: [java] Language identified: [java] 2 Language identified: [java] Language identified: [java] 2

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [java]

Language identified: [perl] Language identified: [java] Language identified: [perl] Language identified: [java]

Total 6 2 Total 6 2

% 33.33 % 33.33

TRIGRAM,GOOD-TURING TRIGRAM,MLE

Ideal Actual Match Ideal Actual Match

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [java]

Language identified: [java] Language identified: [perl] Language identified: [java] Language identified: [java] 2

Language identified: [perl] Language identified: [perl] 1 Language identified: [perl] Language identified: [java]

Language identified: [perl] Language identified: [perl] 2 Language identified: [perl] Language identified: [java]

Total 6 2 Total 6 2

% 33.33 % 33.33

TRIGRAM,WITTEN-BELL

Ideal Actual Match

Language identified: [java] Language identified: [java] 1

Language identified: [cpp] Language identified: [java]

Language identified: [cpp] Language identified: [java]

Language identified: [java] Language identified: [java] 2

Language identified: [perl] Language identified: [java]

Language identified: [perl] Language identified: [java]

Total 6 2

% 33.33

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 119

11.1.3.12.4 Latin-Based Languages, Restricted Tokenizer

unigram,add-delta unigram,add-one

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [fr] 4 Language identified: [fr] Language identified: [fr] 4

Language identified: [es] Language identified: [es] 5 Language identified: [es] Language identified: [es] 5

Language identified: [it] Language identified: [it] 6 Language identified: [it] Language identified: [it] 6

Language identified: [fr] Language identified: [it] Language identified: [fr] Language identified: [it]

Language identified: [en] Language identified: [en] 7 Language identified: [en] Language identified: [en] 7

Total 9 7 Total 9 7

% 77.78 % 77.78

\tiny

\hrule\vskip4pt

\begin{verbatim}

unigram,good-turing unigram,mle

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [fr] 4

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 5

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [it] 6

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [it]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 7

Total 9 4 Total 9 7

% 44.44 % 77.78

unigram,witten-bell bigram,add-one

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [es]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 2

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [fr]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [es]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 4

Total 9 4 Total 9 4

% 44.44 % 44.44

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 120

bigram,add-one bigram,good-turing

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [es] Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [es] 2 Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [en]

Language identified: [es] Language identified: [es] 4 Language identified: [es] Language identified: [fr]

Language identified: [it] Language identified: [es] Language identified: [it] Language identified: [en]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [en]

Language identified: [en] Language identified: [en] 5 Language identified: [en] Language identified: [en] 4

Total 9 5 Total 9 4

% 55.56 % 44.44

bigram,mle bigram,witten-belll

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [en]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [en]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [en]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 4

Total 9 4 Total 9 4

% 44.44 % 44.44

trigram,add-delta trigram,add-one

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [es] Language identified: [en] Language identified: [es]

Language identified: [es] Language identified: [es] 2 Language identified: [es] Language identified: [es] 2

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [es]

Language identified: [es] Language identified: [es] 4 Language identified: [es] Language identified: [es] 4

Language identified: [it] Language identified: [es] Language identified: [it] Language identified: [es]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [es]

Language identified: [en] Language identified: [en] 5 Language identified: [en] Language identified: [en] 5

Total 9 5 Total 9 5

% 55.56 % 55.56

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 121

trigram,good-turing trigram,mle

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [fr] Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [en]

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [en]

Language identified: [it] Language identified: [it] 3 Language identified: [it] Language identified: [en]

Language identified: [fr] Language identified: [fr] 4 Language identified: [fr] Language identified: [en]

Language identified: [en] Language identified: [en] 5 Language identified: [en] Language identified: [en] 4

Total 9 5 Total 9 4

% 55.56 % 44.44

trigram,witten-bell

Ideal Actual Match

Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3

Language identified: [fr] Language identified: [en]

Language identified: [es] Language identified: [en]

Language identified: [it] Language identified: [en]

Language identified: [fr] Language identified: [en]

Language identified: [en] Language identified: [en] 4

Total 9 4

% 44.44

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 122

11.1.3.12.5 “Bag-of-Languages”, Restricted Tokenizer

unigram, add-delta unigram, add-one

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [ru] 4 Language identified: [ru] Language identified: [ru] 4

Language identified: [fr] Language identified: [fr] 5 Language identified: [fr] Language identified: [fr] 5

Language identified: [ru] Language identified: [ru] 6 Language identified: [ru] Language identified: [ru] 6

Language identified: [es] Language identified: [es] 7 Language identified: [es] Language identified: [es] 7

Language identified: [he] Language identified: [he] 8 Language identified: [he] Language identified: [he] 8

Language identified: [it] Language identified: [it] 9 Language identified: [it] Language identified: [it] 9

Language identified: [ar] Language identified: [ru] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [bg] 10 Language identified: [bg] Language identified: [bg] 10

Language identified: [java] Language identified: [java] 11 Language identified: [java] Language identified: [java] 11

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [it] Language identified: [cpp] Language identified: [it]

Language identified: [he] Language identified: [he] 12 Language identified: [he] Language identified: [he] 12

Language identified: [java] Language identified: [it] Language identified: [java] Language identified: [it]

Language identified: [perl] Language identified: [cpp] Language identified: [perl] Language identified: [cpp]

Language identified: [ar] Language identified: [ar] 13 Language identified: [ar] Language identified: [ar] 13

Language identified: [perl] Language identified: [perl] 14 Language identified: [perl] Language identified: [perl] 14

Language identified: [ru] Language identified: [he] Language identified: [ru] Language identified: [he]

Language identified: [fr] Language identified: [it] Language identified: [fr] Language identified: [it]

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [bg]

Language identified: [en] Language identified: [en] 15 Language identified: [en] Language identified: [en] 15

Total 24 15 Total 24 15

% 62.50 % 62.50

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 123

unigram, good-turing unigram, mle

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [fr]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ru] 4

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [fr] 5

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ru] 6

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 7

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [he] 8

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [it] 9

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [bg] 10

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [java] 11

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [it]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [he] 12

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [it]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [cpp]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 13

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [perl] 14

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [he]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [it]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [bg]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 15

Total 24 4 Total 24 15

% 16.67 % 62.50

unigram, witten-bell bigram,add-delta

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [bg]

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [es]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [es] 1

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [he]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [bg]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [bg]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [es]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [fr]

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [es]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [es]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [perl]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [bg]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [es]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [es]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [bg]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [es]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [es]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [bg]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [bg]

Total 24 4 Total 24 1

% 16.67 % 4.17

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 124

bigram,add-one bigram, good-turing

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [es] Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [es] 1 Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [he] Language identified: [en] Language identified: [java]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [he]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [en]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [ru] 3

Language identified: [es] Language identified: [es] 2 Language identified: [es] Language identified: [ar]

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [es] Language identified: [it] Language identified: [ru]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [ru]

Language identified: [bg] Language identified: [es] Language identified: [bg] Language identified: [fr]

Language identified: [java] Language identified: [es] Language identified: [java] Language identified: [java] 4

Language identified: [cpp] Language identified: [es] Language identified: [cpp] Language identified: [fr]

Language identified: [cpp] Language identified: [perl] Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [bg] Language identified: [he] Language identified: [en]

Language identified: [java] Language identified: [es] Language identified: [java] Language identified: [ru]

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [bg] Language identified: [ar] Language identified: [java]

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [perl] 5

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [java]

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [java]

Total 24 2 Total 24 5

% 8.33 % 20.83

bigram, mle bigram, witten-bell

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3 Language identified: [en] Language identified: [perl]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [perl]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [perl]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [ru] 3

Language identified: [es] Language identified: [en] Language identified: [es] Language identified: [ar]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [en] Language identified: [it] Language identified: [ru]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 4

Language identified: [bg] Language identified: [en] Language identified: [bg] Language identified: [cpp]

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [perl]

Language identified: [cpp] Language identified: [en] Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [he] 5

Language identified: [java] Language identified: [en] Language identified: [java] Language identified: [ru]

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [ar] 6

Language identified: [perl] Language identified: [en] Language identified: [perl] Language identified: [perl] 7

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [en] Language identified: [ar] Language identified: [en]

Language identified: [en] Language identified: [en] 4 Language identified: [en] Language identified: [en] 8

Total 24 4 Total 24 8

% 16.67 % 33.33

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 125

trigram, add-delta trigram, add-one

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [bg]

Language identified: [en] Language identified: [es] Language identified: [en] Language identified: [es]

Language identified: [es] Language identified: [es] 1 Language identified: [es] Language identified: [es] 1

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [bg]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [bg]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [es]

Language identified: [ru] Language identified: [bg] Language identified: [ru] Language identified: [bg]

Language identified: [es] Language identified: [es] 2 Language identified: [es] Language identified: [es] 2

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [ar]

Language identified: [it] Language identified: [es] Language identified: [it] Language identified: [es]

Language identified: [ar] Language identified: [es] Language identified: [ar] Language identified: [es]

Language identified: [bg] Language identified: [es] Language identified: [bg] Language identified: [es]

Language identified: [java] Language identified: [es] Language identified: [java] Language identified: [es]

Language identified: [cpp] Language identified: [es] Language identified: [cpp] Language identified: [es]

Language identified: [cpp] Language identified: [es] Language identified: [cpp] Language identified: [es]

Language identified: [he] Language identified: [ru] Language identified: [he] Language identified: [ru]

Language identified: [java] Language identified: [es] Language identified: [java] Language identified: [es]

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [es]

Language identified: [ar] Language identified: [ar] 3 Language identified: [ar] Language identified: [ar] 3

Language identified: [perl] Language identified: [es] Language identified: [perl] Language identified: [es]

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [ar]

Language identified: [fr] Language identified: [es] Language identified: [fr] Language identified: [es]

Language identified: [ar] Language identified: [es] Language identified: [ar] Language identified: [es]

Language identified: [en] Language identified: [bg] Language identified: [en] Language identified: [bg]

Total 24 3 Total 24 3

% 12.50 % 12.50

trigram,good-turing trigram,mle

Ideal Actual Match Ideal Actual Match

Language identified: [en] Language identified: [en] 1 Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [fr] Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 2 Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en] Language identified: [fr] Language identified: [en]

Language identified: [ru] Language identified: [en] Language identified: [ru] Language identified: [en]

Language identified: [es] Language identified: [fr] Language identified: [es] Language identified: [en]

Language identified: [he] Language identified: [ar] Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [it] 3 Language identified: [it] Language identified: [en]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [en]

Language identified: [bg] Language identified: [fr] Language identified: [bg] Language identified: [en]

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [en]

Language identified: [cpp] Language identified: [fr] Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [fr] Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [en] Language identified: [he] Language identified: [en]

Language identified: [java] Language identified: [fr] Language identified: [java] Language identified: [en]

Language identified: [perl] Language identified: [fr] Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [ar] 4 Language identified: [ar] Language identified: [en]

Language identified: [perl] Language identified: [fr] Language identified: [perl] Language identified: [en]

Language identified: [ru] Language identified: [ar] Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [fr] 5 Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [fr] Language identified: [ar] Language identified: [en]

Language identified: [en] Language identified: [en] 6 Language identified: [en] Language identified: [en] 4

Total 24 6 Total 24 4

% 25.00 % 16.67

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 126

trigram,witten-bell

Ideal Actual Match

Language identified: [en] Language identified: [en] 1

Language identified: [en] Language identified: [en] 2

Language identified: [es] Language identified: [en]

Language identified: [en] Language identified: [en] 3

Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en]

Language identified: [ru] Language identified: [en]

Language identified: [es] Language identified: [en]

Language identified: [he] Language identified: [en]

Language identified: [it] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [bg] Language identified: [en]

Language identified: [java] Language identified: [en]

Language identified: [cpp] Language identified: [en]

Language identified: [cpp] Language identified: [en]

Language identified: [he] Language identified: [en]

Language identified: [java] Language identified: [en]

Language identified: [perl] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [perl] Language identified: [en]

Language identified: [ru] Language identified: [en]

Language identified: [fr] Language identified: [en]

Language identified: [ar] Language identified: [en]

Language identified: [en] Language identified: [en] 4

Total 24 4

% 16.67

11.1.4 CYK Probabilistic Parsing with ProbabilisticParsingApp

Revision : 1.30

Originally written on April 12, 2003.

11.1.4.1 Introduction

This section describes the implementation of the CYK probabilistic parsing algorithm [Mar] implemented
in Java and discusses the experiments, grammars used, the results, and difficulties encountered.

11.1.4.2 The Program

11.1.4.2.1 Manual and the Source Code Mini User Manual along with instructions on how to run
the application are provided in the Section 11.1.4.5. The source code is provided in the electronic form
only with few extracts in the presented in the document.

11.1.4.2.2 Grammar File Format Serguei has developed a “grammar compiler” for the Compiler
Design course, and we have adapted it to accept probabilistic grammars. The grammar compiler reads a
source grammar text file and compiles it (some rudimentary lexical and semantic checks are in place). As
a result, a successfully “compiled” Grammar object has a set of terminals, non-terminals, and rules stored
in a binary file. Parsers re-load this compiled grammar and do the main parsing of what they are supposed
to parse.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 127

<LHS> ::= PROBABILITY RHS %EOL

single-line comment; shell style

// single-line comment; C++ style

/*

* multi-line comment; C style

*/

Figure 11.17: Grammar File Format

The grammar file for the grammar file has the format presented in Figure 11.17. Description of the
elements is below. The example of the grammar rules is in Figure 11.18. Whenever one changes the
grammar, it has to be recompiled to take effect.

• <LHS> is a single non-terminal on the left-hand side of the rule.

• ::= is a rule operator separating LHS and RHS.

• PROBABILITY is a floating-point number indicating rule’s probability.

• RHS for this particular assignment has to be in CNF, i.e. either <C> or terminal with <A> and
 being non-terminals.

• All non-terminals have to be enclosed within the angle brackets < and >.

• All grammar rules have to terminated by %EOL that acts a semicolon in C/C++ or Java. It indicates
where to stop processing current rule and look for the next (in case a rule spans several text lines).

• Amount of white space between grammar elements doesn’t matter much.

• The grammar file has also a notion of comments. The grammar compiler accepts shell-like single
line comments when lines start with # as well as C or C++ comments like // and /* */ with the
same effect as that of C and C++.

11.1.4.2.3 Data Structures The main storage data structure is an instance of the Grammar class that
holds vectors of terminals (see file marf/nlp/Parsing/GrammarCompiler/Terminal.java), non-terminals
(see file marf/nlp/Parsing/GrammarCompiler/NonTerminal.java), and rules (see file
marf/nlp/Parsing/GrammarCompiler/ProbabilisticRule.java).

While the grammar is being parsed and compiled there are also various grammar tokens and their
types involved. Since they are not very much relevant to the subject of this application we won’t talk

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 128

/*

* 80% of sentences are noun phrases

* followed by verb phrases.

*/

<S> ::= 0.8 <NP> <VP> %EOL

// A very rare verb

<V> ::= 0.0001 disambiguate %EOL

EOF

Figure 11.18: Grammar File Example

about them (examine the contents of the marf/nlp/Parsing/ and marf/nlp/Parsing/GrammarCompiler/

directories if you care).

The CYK algorithm’s data structures, the π and back arrays, are represented as 3-dimensional array of
doubles and vectors of back-indices respectively: double[][][] oParseMatrix and Vector[][][] aoBack

in marf/nlp/Parsing/ProbabilisticParser.java. There is also a vector of words of the incoming sen-
tence to be parsed, Vector oWords.

11.1.4.3 Methodology

We have experimented (not to full extent yet) with three grammars: Basic, Extended, and Realistic.
Description of the grammars and how they were obtained is presented below. The set of testing sentences
was initially based on the given (Basic) grammar to see whether the CYK algorithm indeed parses all
syntactically valid sentences and rejects the rest. Then the sentence set was augmented from various
sources (e.g. the paper Serguei presented and on top of his head). Finally, the original requirements were
attempted to be used as a source of grammar.

11.1.4.3.1 Basic Grammar The basic grammar given in the requirements has been used at first to
develop and debug the application. The basic grammar is in Figure 11.19.

11.1.4.3.2 Extended Grammar The basic grammar was extended with few rules from [JM00], p.
449. The probability scores are artificial and adapted from the basic grammar and the book’s grammar,
and recomputed approximately1 by hand. The extended grammar is in Figure 11.20. Both basic and
extended grammars used the same set of testing sentences presented in Figure 11.21. There is a number
of sentences for which we have never come up with rules as initially intended, so there are no parses for
the them in the output can be seen yet, a TODO.

1Preserving proportional relevance from all sources and making sure they all add up to 100%

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 129

<S> ::= 0.8 <NP> <VP> %EOL

<S> ::= 0.2 <V> <NP> %EOL

<NP> ::= 1.0 <DET> <NOMINAL> %EOL

<NOMINAL> ::= 1.0 <ADJ> <NOMINAL> %EOL

<VP> ::= 1.0 <V> <NP> %EOL

<DET> ::= 0.5 the %EOL

<DET> ::= 0.4 a %EOL

<DET> ::= 0.1 my %EOL

<NOMINAL> ::= 0.4 rabbit %EOL

<NOMINAL> ::= 0.2 smile %EOL

<NOMINAL> ::= 0.4 cat %EOL

<V> ::= 0.8 has %EOL

<V> ::= 0.2 eats %EOL

<ADJ> ::= 1.0 white %EOL

Figure 11.19: Original Basic Grammar

<S> ::= 0.35 <NP> <VP> %EOL

<S> ::= 0.25 <Pronoun> <VP> %EOL

<S> ::= 0.03 <NOMINAL> <VP> %EOL

<S> ::= 0.05 <V> <NP> %EOL

<S> ::= 0.17 <V> <Pronoun> %EOL

<S> ::= 0.05 <V> <NOMINAL> %EOL

<S> ::= 0.10 <AuxNP> <VP> %EOL

<NP> ::= 0.35 <DET> <NOMINAL> %EOL

<NP> ::= 0.65 <ProperNoun> <NOMINAL> %EOL

<NOMINAL> ::= 0.10 <ProperNoun> <NOMINAL> %EOL

<NOMINAL> ::= 0.90 <ADJ> <NOMINAL> %EOL

<VP> ::= 0.95 <V> <NP> %EOL

<VP> ::= 0.05 <VP> <NP> %EOL

<AuxNP> ::= 0.20 <Aux> <NP> %EOL

<AuxNP> ::= 0.60 <Aux> <Pronoun> %EOL

<AuxNP> ::= 0.20 <Aux> <NOMINAL> %EOL

<DET> ::= 0.50 the %EOL

<DET> ::= 0.40 a %EOL

<DET> ::= 0.05 my %EOL

<DET> ::= 0.05 that %EOL

<NOMINAL> ::= 0.20 rabbit %EOL

<NOMINAL> ::= 0.10 smile %EOL

<NOMINAL> ::= 0.20 cat %EOL

<NOMINAL> ::= 0.05 book %EOL

<NOMINAL> ::= 0.25 flights %EOL

<NOMINAL> ::= 0.20 meal %EOL

<V> ::= 0.50 has %EOL

<V> ::= 0.10 eats %EOL

<V> ::= 0.10 book %EOL

<V> ::= 0.10 include %EOL

<V> ::= 0.20 want %EOL

<Aux> ::= 0.40 can %EOL

<Aux> ::= 0.30 does %EOL

<Aux> ::= 0.30 do %EOL

<ADJ> ::= 0.80 white %EOL

<ADJ> ::= 0.20 blue %EOL

<Pronoun> ::= 0.40 you %EOL

<Pronoun> ::= 0.60 I %EOL

<ProperNoun> ::= 0.40 TWA %EOL

<ProperNoun> ::= 0.60 Denver %EOL

Figure 11.20: Extended Grammar

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 130

my rabbit has a white smile

my rabbit has a smile

my rabbit has a telephone

rabbit my a white has smile

a slim blue refrigerator jumped gracefully out of the bottle

my smile has a rabbit

the cat eats my white rabbit

a white smile eats the cat

my cat has a white rabbit

my cat has white rabbit

cat has a white rabbit

smile has my cat

can you book TWA flights

the lion jumped through the hoop

the trainer jumped the lion through the hoop

the butter melted in the pan

the cook melted the butter in the pan

the rich love their money

the rich love sometimes too

the contractor built the houses last summer

the contractor built last summer

Figure 11.21: Input sentences for the Basic and Extended Grammars

11.1.4.3.3 Realistic Grammar Without having 100% completed the extended grammar, we jumped
to develop something more “realistic”, the Realistic Grammar. Since the two previous grammars are quite
artificial, to test out it on some more “realistic” data we came up with the best grammar we could from
the sentences of the requirements (other than the sample grammar; the actual requirements were used).
The sentences, some were expanded, are in Figure 11.22, and the grammar itself is in Figure 11.23. Many
of the rules of the form of A->BC still may not have truly correct probabilities corresponding to the paper
due to the above two reasons.

11.1.4.3.4 Grammar Restrictions All incoming sentences, though case-sensitive, are required to
be in the lower-case unless a given word is a proper noun or the pronoun I. The current system doesn’t
deal with punctuation either, so complex sentences that use commas, semicolons, and other punctuation
characters may not (and appear not to) be parsed correctly (such punctuation is simply ignored).

However, all the above restrictions can be solved just at the grammar level without touching a single
line of code, but they were not dealt with yet in the first prototype.

11.1.4.3.5 Difficulties Encountered

Learning Probabilistic Grammars The major problem of this type of grammars is to learn them.
This requires at least having a some decent POS tagger (e.g. in [Bri95]) and decent knowledge of the
English grammar and then sitting down and computing the probabilities of the rules manually. This is
a very time-consuming and unjustified enormous effort for documents of relatively small size (let alone
medium-size or million-word corpora). Hence, there is a need for automatic tools and/or pre-existing (and

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 131

you should submit a paper listing and report and an electronic version of your code

implement the CYK algorithm to find the best parse for a given sentence

your program should take as input a probabilistic grammar and a sentence and display the best parse tree along with its probability

you are not required to use a specific programming language

Perl, CPP, C or Java are appropriate for this task

as long as you explain it, your grammar can be in any format you wish

your grammar can be in any format you wish as long as you explain it

experiment with your grammar

is it restrictive enough

does it refuse ungrammatical sentences

does it cover all grammatical sentences

write a report to describe your code and your experimentation

your report must describe the program

your report must describe the experiments

describe your code itself

indicate the instructions necessary to run your code

describe your choice of test sentences

describe your grammar and how you developed it

what problems do you see with your current implementation

what problems do you see with your current grammar

how would you improve it

both the code and the report must be submitted electronically and in paper

in class, you must submit a listing of your program and results and the report

through the electronic submission form you must submit the code of your program and results and an electronic version of your report

Figure 11.22: Requirements’ sentences used as a parsed “corpus”

freely available!) treebanks to learn the grammars from. For example, we have spent two days developing
grammar for a one-sheet document (see Section 11.1.4.3.3) and the end result is that we can only parse 3
(three) sentences so far with it.

Chomsky Normal Form Another problem is the conversion of existing grammars or maintaining the
current grammar to make sure it is in the CNF as the CYK algorithm [Mar] requires. This is a problem
because for a human maintainer the number of rules grows, so it becomes less obvious what a initial rule
was like, and there’s always a possibility to create more undesired parses that way. We had to do that for
the Extended and Realistic Grammars that were based on the grammar rules from the book [JM00].

To illustrate the problem, the rules similar to the below have to be converted into CNF:

<A> ->

<A> -> t <C>

<A> -> <C> <D>

<A> -> <C> t <D> <E>

The conversion implies creating new non-terminals augmenting the number of rules, which may be
hard to trace later on when there are many.

<A> -> <A>

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 132

<S> ::= 0.35 <NP> <VP> %EOL

<S> ::= 0.25 <Pronoun> <VP> %EOL

<S> ::= 0.03 <NOMINAL> <VP> %EOL

<S> ::= 0.05 <V> <NP> %EOL

<S> ::= 0.17 <V> <Pronoun> %EOL

<S> ::= 0.05 <V> <NOMINAL> %EOL

<S> ::= 0.10 <AuxNP> <VP> %EOL

<S> ::= 0.10 <S> <ConjS> %EOL

<S> ::= 0.10 <WhNP> <VP> %EOL

<S> ::= 0.10 <WhAuxNP> <VP> %EOL

<WhAuxNP> ::= 1.00 <WhNP> <AuxNP> %EOL

<WhNP> ::= 0.34 <WhWord> <NP> %EOL

<WhNP> ::= 0.33 <WhWord> <Pronoun> %EOL

<WhNP> ::= 0.33 <WhWord> <NOMINAL> %EOL

<ConjS> ::= 1.00 <Conj> <S> %EOL

<NP> ::= 0.35 <DET> <NOMINAL> %EOL

<NP> ::= 0.10 <ProperNoun> <NOMINAL> %EOL

<NP> ::= 0.30 <NP> <ConjNP> %EOL

<NP> ::= 0.10 <Pronoun> <ConjNP> %EOL

<NP> ::= 0.05 <NOMINAL> <ConjNP> %EOL

<NP> ::= 0.10 <PreDet> <NOMINAL> %EOL

<ConjNP> ::= 0.34 <Conj> <NP> %EOL

<ConjNP> ::= 0.33 <Conj> <Pronoun> %EOL

<ConjNP> ::= 0.33 <Conj> <NOMINAL> %EOL

<NOMINAL> ::= 0.08 <ProperNoun> <NOMINAL> %EOL

<NOMINAL> ::= 0.80 <ADJ> <NOMINAL> %EOL

<NOMINAL> ::= 0.12 <NOMINAL> <PP> %EOL

<VP> ::= 0.34 <V> <NP> %EOL

<VP> ::= 0.18 <V> <Pronoun> %EOL

<VP> ::= 0.01 <V> <Adv> %EOL

<VP> ::= 0.17 <V> <NOMINAL> %EOL

<VP> ::= 0.05 <VP> <NP> %EOL

<VP> ::= 0.05 <VP> <Pronoun> %EOL

<VP> ::= 0.05 <VP> <NOMINAL> %EOL

<VP> ::= 0.05 <VP> <ConjVP> %EOL

<VP> ::= 0.02 <V> <S> %EOL

<VP> ::= 0.03 <V> <PP> %EOL

<VP> ::= 0.05 <V> <NPPP> %EOL

<ConjVP> ::= 1.00 <Conj> <VP> %EOL

<NPPP> ::= 0.34 <NP> <PP> %EOL

<NPPP> ::= 0.33 <Pronoun> <PP> %EOL

<NPPP> ::= 0.33 <NOMINAL> <PP> %EOL

<PP> ::= 1.00 <Prep> <NP> %EOL

<AuxNP> ::= 0.20 <Aux> <NP> %EOL

<AuxNP> ::= 0.60 <Aux> <Pronoun> %EOL

<AuxNP> ::= 0.20 <Aux> <NOMINAL> %EOL

<DET> ::= 0.48 the %EOL

<DET> ::= 0.32 a %EOL

<DET> ::= 0.08 an %EOL

<DET> ::= 0.08 any %EOL

<DET> ::= 0.04 this %EOL

<DET> ::= 0.00 my %EOL

<DET> ::= 0.00 that %EOL

<DET> ::= 0.00 those %EOL

<DET> ::= 0.00 these %EOL

<NOMINAL> ::= 0.0188679 paper %EOL

<NOMINAL> ::= 0.0188679 algorithm %EOL

<NOMINAL> ::= 0.0188679 parse %EOL

<NOMINAL> ::= 0.0188679 input %EOL

<NOMINAL> ::= 0.0188679 tree %EOL

<NOMINAL> ::= 0.0188679 probability %EOL

<NOMINAL> ::= 0.0188679 language %EOL

<NOMINAL> ::= 0.0188679 task %EOL

<NOMINAL> ::= 0.0188679 experimentation %EOL

<NOMINAL> ::= 0.0188679 experiments %EOL

<NOMINAL> ::= 0.0188679 instructions %EOL

<NOMINAL> ::= 0.0188679 choice %EOL

<NOMINAL> ::= 0.0188679 implementation %EOL

<NOMINAL> ::= 0.0188679 class %EOL

<NOMINAL> ::= 0.0188679 form %EOL

<NOMINAL> ::= 0.0377358 listing %EOL

<NOMINAL> ::= 0.0377358 version %EOL

<NOMINAL> ::= 0.0377358 sentence %EOL

<NOMINAL> ::= 0.0377358 format %EOL

<NOMINAL> ::= 0.0377358 problems %EOL

<NOMINAL> ::= 0.0377358 results %EOL

<NOMINAL> ::= 0.0566038 sentences %EOL

<NOMINAL> ::= 0.0754717 program %EOL

<NOMINAL> ::= 0.113208 code %EOL

<NOMINAL> ::= 0.113208 grammar %EOL

<NOMINAL> ::= 0.132075 report %EOL

<NOMINAL> ::= 0.00 rabbit %EOL

<NOMINAL> ::= 0.00 smile %EOL

<NOMINAL> ::= 0.00 cat %EOL

<NOMINAL> ::= 0.00 book %EOL

<NOMINAL> ::= 0.00 flights %EOL

<NOMINAL> ::= 0.00 meal %EOL

<V> ::= 0.0344828 implement %EOL

<V> ::= 0.0344828 take %EOL

<V> ::= 0.0344828 display %EOL

<V> ::= 0.0344828 experiment %EOL

<V> ::= 0.0344828 refuse %EOL

<V> ::= 0.0344828 cover %EOL

<V> ::= 0.0344828 write %EOL

<V> ::= 0.0344828 developed %EOL

<V> ::= 0.0344828 improve %EOL

<V> ::= 0.0344828 submitted %EOL

<V> ::= 0.0344828 indicate %EOL

<V> ::= 0.0344828 find %EOL

<V> ::= 0.0344828 run %EOL

<V> ::= 0.0344828 required %EOL

<V> ::= 0.0689655 explain %EOL

<V> ::= 0.0689655 see %EOL

<V> ::= 0.0689655 wish %EOL

<V> ::= 0.103448 submit %EOL

<V> ::= 0.206897 describe %EOL

<V> ::= 0.00 has %EOL

<V> ::= 0.00 eats %EOL

<V> ::= 0.00 book %EOL

<V> ::= 0.00 include %EOL

<V> ::= 0.00 want %EOL

<Aux> ::= 0.05 is %EOL

<Aux> ::= 0.05 would %EOL

<Aux> ::= 0.10 should %EOL

<Aux> ::= 0.10 do %EOL

<Aux> ::= 0.10 can %EOL

<Aux> ::= 0.10 does %EOL

<Aux> ::= 0.10 are %EOL

<Aux> ::= 0.15 be %EOL

<Aux> ::= 0.25 must %EOL

<ADJ> ::= 0.0243902 paper %EOL

<ADJ> ::= 0.0243902 parse %EOL

<ADJ> ::= 0.0243902 probabilistic %EOL

<ADJ> ::= 0.0243902 specific %EOL

<ADJ> ::= 0.0243902 programming %EOL

<ADJ> ::= 0.0243902 restrictive %EOL

<ADJ> ::= 0.0243902 ungrammatical %EOL

<ADJ> ::= 0.0243902 grammatical %EOL

<ADJ> ::= 0.0243902 test %EOL

<ADJ> ::= 0.0243902 submission %EOL

<ADJ> ::= 0.0243902 appropriate %EOL

<ADJ> ::= 0.0243902 given %EOL

<ADJ> ::= 0.0243902 enough %EOL

<ADJ> ::= 0.0243902 necessary %EOL

<ADJ> ::= 0.0487805 current %EOL

<ADJ> ::= 0.0487805 best %EOL

<ADJ> ::= 0.0487805 long %EOL

<ADJ> ::= 0.0731707 electronic %EOL

<ADJ> ::= 0.439024 your %EOL

<ADJ> ::= 0.00 white %EOL

<ADJ> ::= 0.00 blue %EOL

<ADJ> ::= 0.00 other %EOL

<Pronoun> ::= 0.047619 its %EOL

<Pronoun> ::= 0.047619 itself %EOL

<Pronoun> ::= 0.333333 it %EOL

<Pronoun> ::= 0.571429 you %EOL

<Pronoun> ::= 0.00 I %EOL

<Pronoun> ::= 0.00 me %EOL

<Pronoun> ::= 0.00 she %EOL

<Pronoun> ::= 0.00 he %EOL

<Pronoun> ::= 0.00 they %EOL

<Pronoun> ::= 0.00 her %EOL

<Pronoun> ::= 0.00 him %EOL

<Pronoun> ::= 0.00 them %EOL

<Conj> ::= 0.92 and %EOL

<Conj> ::= 0.08 or %EOL

<Conj> ::= 0.00 but %EOL

<Prep> ::= 0.0384615 along %EOL

<Prep> ::= 0.0384615 through %EOL

<Prep> ::= 0.0769231 for %EOL

<Prep> ::= 0.153846 to %EOL

<Prep> ::= 0.153846 in %EOL

<Prep> ::= 0.153846 with %EOL

<Prep> ::= 0.192308 of %EOL

<Prep> ::= 0.192308 as %EOL

<Prep> ::= 0.00 on %EOL

<Prep> ::= 0.00 from %EOL

<ProperNoun> ::= 0.20 CYK %EOL

<ProperNoun> ::= 0.20 C %EOL

<ProperNoun> ::= 0.20 CPP %EOL

<ProperNoun> ::= 0.20 Java %EOL

<ProperNoun> ::= 0.20 Perl %EOL

<ProperNoun> ::= 0.00 TWA %EOL

<ProperNoun> ::= 0.00 Denver %EOL

<WhWord> ::= 0.50 what %EOL

<WhWord> ::= 0.50 how %EOL

<PreDet> ::= 0.50 both %EOL

<PreDet> ::= 0.50 all %EOL

<Adv> ::= 0.50 electronically %EOL

<Adv> ::= 0.50 not %EOL

Figure 11.23: Realistic Grammar

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 133

<A> -> <T> <C>

<A> -> <BC> <D>

<A> -> <BCT> <DE>

<T> -> t

<BC> -> <C>

<DE> -> <D> <DE>

<BCT> -> <BC> <T>

The rule-set has been doubled in the above example. That creates a problem of distributing the
probability to the new rules as well as the problem below.

Exponential Growth of Storage Requirements and Run Time While playing with the Basic and
Extended grammars, we didn’t pay much attention to the run-time aspect of the algorithm (even though
the number of the nested for-loops looked alerting) because it was a second or less for the sentence set
in Figure 11.21. It became a problem, however, when we came up with the Realistic grammar. The
run-time for this grammar has jumped to 16 (sixteen !!!) minutes (!!!) in average for the sentence set in
Figure 11.22. This was rather discouraging (unless the goal is not the speed but the most correct result
at the hopefully near end). The problem stems from the algorithm’s complexity and huge data sparseness
for large grammars. One of the major reasons of the data sparseness problem is the CNF requirement as
described above: the number of non-terminals grows rapidly largely increasing one of the dimensions of
our π and back arrays causing number of iteration of the parsing algorithm to increase exponentially (or
it is at least cubic). And a lot of time is spent to find out that there’s no a parse for a sentence (given all
the words of the sentence in the grammar).

Data Sparseness and Smoothing The bigger grammar is the more severe the data sparseness is
in our arrays in this algorithm causing the above problem of the run-time and storage requirements.
Smoothing techniques we previously implemented in LangIdentApp can be applied to at least get rid of
zero-probabilities in the π array, but we believe the smoothing might hurt rather than improve the parsing
performance; yet we haven’t tested this claim out yet (a TODO). A better way could be smooth the
grammar rules’ probabilities.

11.1.4.4 Results and Conclusions

11.1.4.4.1 Generalities The algorithm does indeed seem to work and accept syntactically-valid sen-
tences while rejecting the ungrammatical ones. Though to exhaust all the possible grammatical and
ungrammatical sentences in testing would require a lot more time. There is also some disappointment
with respect to the running time increase when the grammar grows and the other problems mentioned
before.

To overcome the run-time problem, we’d have to use some more sophisticated data structures than
a plain 3D array of doubles, but this is like fighting with the disease, instead of its cause. The CYK

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 134

algorithm has to be optimized or even re-born to allow more than just CNF grammars and be faster at
the same time.

The restrictions on the sentences mentioned earlier can all be overcome by just only tweaking the
grammar (but increasing the run-time along the way).

While most of the results of my test runs are in the further sections, below we present one interactive
session sample as well as our favorite parse.

11.1.4.4.2 Sample Interactive Run

junebug.mokhov [a3] % java ProbabilisticParsingApp --parse

Probabilistic Parsing

Serguei A. Mokhov, mokhov@cs

April 2003

Entering interactive mode... Type \q to exit.

sentence> my rabbit has a white smile

my rabbit has a white smile

Parse for the sentence [my rabbit has a white smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0020480000000000008) [0-5: my rabbit has a white smile]

<NP> (0.04000000000000001) [0-1: my rabbit]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.4) [1-1: rabbit]

<VP> (0.06400000000000002) [2-5: has a white smile]

<V> (0.8) [2-2: has]

<NP> (0.08000000000000002) [3-5: a white smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.2) [4-5: white smile]

<ADJ> (1.0) [4-4: white]

<NOMINAL> (0.2) [5-5: smile]

sentence> my rabbit has a smile

my rabbit has a smile

Parse for the sentence [my rabbit has a smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0020480000000000008) [0-4: my rabbit has a smile]

<NP> (0.04000000000000001) [0-1: my rabbit]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.4) [1-1: rabbit]

<VP> (0.06400000000000002) [2-4: has a smile]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 135

<V> (0.8) [2-2: has]

<NP> (0.08000000000000002) [3-4: a smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.2) [4-4: smile]

sentence> my rabbit has a telephone

my rabbit has a telephone

There’s no parse for [my rabbit has a telephone]

sentence> the cat eats the rabbit

the cat eats the rabbit

Parse for the sentence [the cat eats the rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.006400000000000002) [0-4: the cat eats the rabbit]

<NP> (0.2) [0-1: the cat]

<DET> (0.5) [0-0: the]

<NOMINAL> (0.4) [1-1: cat]

<VP> (0.04000000000000001) [2-4: eats the rabbit]

<V> (0.2) [2-2: eats]

<NP> (0.2) [3-4: the rabbit]

<DET> (0.5) [3-3: the]

<NOMINAL> (0.4) [4-4: rabbit]

sentence> a white cat has a white smile

a white cat has a white smile

Parse for the sentence [a white cat has a white smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.008192000000000003) [0-6: a white cat has a white smile]

<NP> (0.16000000000000003) [0-2: a white cat]

<DET> (0.4) [0-0: a]

<NOMINAL> (0.4) [1-2: white cat]

<ADJ> (1.0) [1-1: white]

<NOMINAL> (0.4) [2-2: cat]

<VP> (0.06400000000000002) [3-6: has a white smile]

<V> (0.8) [3-3: has]

<NP> (0.08000000000000002) [4-6: a white smile]

<DET> (0.4) [4-4: a]

<NOMINAL> (0.2) [5-6: white smile]

<ADJ> (1.0) [5-5: white]

<NOMINAL> (0.2) [6-6: smile]

sentence> cat white my has rabbit

cat white my has rabbit

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 136

There’s no parse for [cat white my has rabbit]

sentence> smile rabbit eats my cat

smile rabbit eats my cat

There’s no parse for [smile rabbit eats my cat]

sentence> cat eats rabbit

cat eats rabbit

There’s no parse for [cat eats rabbit]

sentence> the cat eats the rabbit

the cat eats the rabbit

Parse for the sentence [the cat eats the rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.006400000000000002) [0-4: the cat eats the rabbit]

<NP> (0.2) [0-1: the cat]

<DET> (0.5) [0-0: the]

<NOMINAL> (0.4) [1-1: cat]

<VP> (0.04000000000000001) [2-4: eats the rabbit]

<V> (0.2) [2-2: eats]

<NP> (0.2) [3-4: the rabbit]

<DET> (0.5) [3-3: the]

<NOMINAL> (0.4) [4-4: rabbit]

sentence> \q

junebug.mokhov [a3] %

11.1.4.4.3 Favorite Parse As of this release, we were able to only parse the three sentences from the
“requirements corpus” and below is the favorite:

<S> (7.381879524149979E-10) [0-7: describe your grammar and how you developed it]

<S> (4.11319751814313E-4) [0-2: describe your grammar]

<V> (0.206897) [0-0: describe]

<NOMINAL> (0.039760823193600005) [1-2: your grammar]

<ADJ> (0.439024) [1-1: your]

<NOMINAL> (0.113208) [2-2: grammar]

<ConjS> (1.7946815078995936E-5) [3-7: and how you developed it]

<Conj> (0.92) [3-3: and]

<S> (1.9507407694560798E-5) [4-7: how you developed it]

<WhNP> (0.094285785) [4-5: how you]

<WhWord> (0.5) [4-4: how]

<Pronoun> (0.571429) [5-5: you]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 137

<VP> (0.002068965931032) [6-7: developed it]

<V> (0.0344828) [6-6: developed]

<Pronoun> (0.333333) [7-7: it]

11.1.4.5 Mini User Manual

11.1.4.5.1 System Requirements The program was mostly developed under Linux, so there’s a
Makefile and a testing shell script to simplify some routine tasks. For JVM, any JDK 1.4.* and above
will do. bash would be nice to have to be able to run the batch script. Since the application itself is written
in Java, it’s not bound to a specific architecture, thus may be compiled and run without the makefiles and
scripts on virtually any operating system.

11.1.4.5.2 How To Run It There are thousands of ways how to run the program. Some of them are
listed below.

Using the Shell Script There is a script out there – testing.sh. It simply does compilation and
batch processing for all the three grammars and two sets of test sentences in one run. The script is written
using bash syntax; hence, bash should be present.

Type:

./testing.sh

or

time ./testing.sh

to execute the batch (and time it in the second case). And example of what one can get is below.
NOTE: processing the first grammar, in grammar.asmt.txt, may take awhile (below it took us 16 minutes),
so be aware of that fact (see the reasons in Section 11.1.4.3.5).

E.g.:

junebug.mokhov [a3] % time ./testing.sh

Making sure java files get compiled...

javac -g ProbabilisticParsingApp.java

Testing...

Compiling grammar: grammar.asmt.txt

Parsing...991.318u 1.511s 16:35.55 99.7% 0+0k 0+0io 5638pf+0w

Done

Look for parsing results in grammar.asmt.txt-parse.log

Compiling grammar: grammar.extended.txt

Parsing...1.591u 0.062s 0:01.82 90.6% 0+0k 0+0io 5637pf+0w

Done

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 138

Look for parsing results in grammar.extended.txt-parse.log

Compiling grammar: grammar.original.txt

Parsing...0.455u 0.066s 0:00.72 70.8% 0+0k 0+0io 5599pf+0w

Done

Look for parsing results in grammar.original.txt-parse.log

Testing done.

995.675u 1.906s 16:41.68 99.5% 0+0k 0+0io 42211pf+0w

junebug.mokhov [a3] %

Running ProbabilisitcParsingApp You can run the application itself without any wrapping scripts
and provide options to it. This is a command-line application, so there is no GUI associated with it yet.
To run the application you have to compile it first. You can use either make with no arguments to compile
or use a standard Java compiler.

Type:

make

or

javac -cp marf.jar:. ProbabilisitcParsingApp.java

After having compiled the application, you can run it with a JVM. There are mutually-exclusive
required options:

• --train <grammar-file> – to compile a grammar from the specified text file. This is the first thing
you need to do before trying to parse any sentences. Once compiled, you don’t need to recompile it
each time you run the parser unless you made a fresh copy of the application or made changes to
the grammar file or plan to use a grammar from another file.

• --parse – to actually run the parser in the interactive mode (or batch mode, just use input file
redirection with your test sentences). To run the parser successfully there should be compiled
grammar first (see --train).

E.g.:

To compile the Basic Grammar:

java -cp marf.jar:. ProbabilisitcParsingApp.java --train grammars/grammar.original.txt

To batch process the sentence set from a file:

java -cp marf.jar:. ProbabilisitcParsingApp.java --parse < data/test-sentences.txt

To run the application interactively:

java -cp marf.jar:. ProbabilisitcParsingApp.java --parse

Complete usage information:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 139

Probabilistic Parsing

Serguei A. Mokhov, mokhov@cs.concordia.ca

April 2003 - 2007

Usage:

java ProbabilisticParsingApp --help | -h

: to display this help and exit

java ProbabilisticParsingApp --version

: to display version and exit

java ProbabilisticParsingApp --train [OPTIONS] <grammar-file>

: to compile grammar from the <grammar-file>

java ProbabilisticParsingApp --parse [OPTIONS]

: to parse sentences from standard input

Where options are of the following:

--debug - enable debugging (more verbose output)

-case - make it case-sensitive

-num - parse numerical values

-quote - consider quotes and count quoted strings as one token

-eos - make typical ends of sentences (<?>, <!>, <.>) significant

11.1.4.5.3 List of Files of Interest

Directories

• marf/nlp/ – that’s where most of the code is for this application is, the marf.nlp package.

• marf/nlp/Parsing/ – that’s where most of the Parsing code is for Probabilistic Grammars and
Grammars in general

• marf/nlp/Parsing/GrammarCompiler/ – that’s where the Grammar Compiler modules are

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 140

The Application The application, its makefile, and the wrapper script for batch training and testing.

ProbabilisticParsingApp.java

Makefile

testing.sh

marf.jar

Grammars grammars/grammar.original.txt – The Basic Grammar

grammars/grammar.extended.txt – The Extended Grammar

grammars/grammar.asmt.txt – The Realistic Grammar

Test Sentences data/test-sentences.txt – the sample sentences from all over the place.

data/asmt-sentences.txt – the sentences derived from the requirements sheet.

11.1.4.6 Results

11.1.4.6.1 Basic Grammar

Probabilistic Parsing

Serguei A. Mokhov, mokhov@cs

April 2003

Entering interactive mode... Type \q to exit.

sentence> my rabbit has a white smile

Parse for the sentence [my rabbit has a white smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0020480000000000008) [0-5: my rabbit has a white smile]

<NP> (0.04000000000000001) [0-1: my rabbit]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.4) [1-1: rabbit]

<VP> (0.06400000000000002) [2-5: has a white smile]

<V> (0.8) [2-2: has]

<NP> (0.08000000000000002) [3-5: a white smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.2) [4-5: white smile]

<ADJ> (1.0) [4-4: white]

<NOMINAL> (0.2) [5-5: smile]

sentence> my rabbit has a smile

Parse for the sentence [my rabbit has a smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0020480000000000008) [0-4: my rabbit has a smile]

<NP> (0.04000000000000001) [0-1: my rabbit]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.4) [1-1: rabbit]

<VP> (0.06400000000000002) [2-4: has a smile]

<V> (0.8) [2-2: has]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 141

<NP> (0.08000000000000002) [3-4: a smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.2) [4-4: smile]

sentence> my rabbit has a telephone

There’s no parse for [my rabbit has a telephone]

sentence> rabbit my a white has smile

There’s no parse for [rabbit my a white has smile]

sentence> a slim blue refrigerator jumped gracefully out of the bottle

There’s no parse for [a slim blue refrigerator jumped gracefully out of the bottle]

sentence> my smile has a rabbit

Parse for the sentence [my smile has a rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0020480000000000008) [0-4: my smile has a rabbit]

<NP> (0.020000000000000004) [0-1: my smile]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.2) [1-1: smile]

<VP> (0.12800000000000003) [2-4: has a rabbit]

<V> (0.8) [2-2: has]

<NP> (0.16000000000000003) [3-4: a rabbit]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.4) [4-4: rabbit]

sentence> the cat eats my white rabbit

Parse for the sentence [the cat eats my white rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0012800000000000005) [0-5: the cat eats my white rabbit]

<NP> (0.2) [0-1: the cat]

<DET> (0.5) [0-0: the]

<NOMINAL> (0.4) [1-1: cat]

<VP> (0.008000000000000002) [2-5: eats my white rabbit]

<V> (0.2) [2-2: eats]

<NP> (0.04000000000000001) [3-5: my white rabbit]

<DET> (0.1) [3-3: my]

<NOMINAL> (0.4) [4-5: white rabbit]

<ADJ> (1.0) [4-4: white]

<NOMINAL> (0.4) [5-5: rabbit]

sentence> a white smile eats the cat

Parse for the sentence [a white smile eats the cat] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0025600000000000015) [0-5: a white smile eats the cat]

<NP> (0.08000000000000002) [0-2: a white smile]

<DET> (0.4) [0-0: a]

<NOMINAL> (0.2) [1-2: white smile]

<ADJ> (1.0) [1-1: white]

<NOMINAL> (0.2) [2-2: smile]

<VP> (0.04000000000000001) [3-5: eats the cat]

<V> (0.2) [3-3: eats]

<NP> (0.2) [4-5: the cat]

<DET> (0.5) [4-4: the]

<NOMINAL> (0.4) [5-5: cat]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 142

sentence> my cat has a white rabbit

Parse for the sentence [my cat has a white rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (0.0040960000000000015) [0-5: my cat has a white rabbit]

<NP> (0.04000000000000001) [0-1: my cat]

<DET> (0.1) [0-0: my]

<NOMINAL> (0.4) [1-1: cat]

<VP> (0.12800000000000003) [2-5: has a white rabbit]

<V> (0.8) [2-2: has]

<NP> (0.16000000000000003) [3-5: a white rabbit]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.4) [4-5: white rabbit]

<ADJ> (1.0) [4-4: white]

<NOMINAL> (0.4) [5-5: rabbit]

sentence> my cat has white rabbit

There’s no parse for [my cat has white rabbit]

sentence> cat has a white rabbit

There’s no parse for [cat has a white rabbit]

sentence> smile has my cat

There’s no parse for [smile has my cat]

sentence> can you book TWA flights

There’s no parse for [can you book TWA flights]

sentence> the lion jumped through the hoop

There’s no parse for [the lion jumped through the hoop]

sentence> the trainer jumped the lion through the hoop

There’s no parse for [the trainer jumped the lion through the hoop]

sentence> the butter melted in the pan

There’s no parse for [the butter melted in the pan]

sentence> the cook melted the butter in the pan

There’s no parse for [the cook melted the butter in the pan]

sentence> the rich love their money

There’s no parse for [the rich love their money]

sentence> the rich love sometimes too

There’s no parse for [the rich love sometimes too]

sentence> the contractor built the houses last summer

There’s no parse for [the contractor built the houses last summer]

sentence> the contractor built last summer

There’s no parse for [the contractor built last summer]

sentence>

11.1.4.6.2 Extended Grammar

Probabilistic Parsing

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 143

Serguei A. Mokhov, mokhov@cs

April 2003

Entering interactive mode... Type \q to exit.

sentence> my rabbit has a white smile

Parse for the sentence [my rabbit has a white smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (1.915200000000001E-6) [0-5: my rabbit has a white smile]

<NP> (0.0020000000000000005) [0-1: my rabbit]

<DET> (0.05) [0-0: my]

<NOMINAL> (0.2) [1-1: rabbit]

<VP> (0.002736000000000001) [2-5: has a white smile]

<V> (0.5) [2-2: has]

<NP> (0.005760000000000002) [3-5: a white smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.07200000000000002) [4-5: white smile]

<ADJ> (0.8) [4-4: white]

<NOMINAL> (0.1) [5-5: smile]

sentence> my rabbit has a smile

Parse for the sentence [my rabbit has a smile] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (2.6600000000000012E-6) [0-4: my rabbit has a smile]

<NP> (0.0020000000000000005) [0-1: my rabbit]

<DET> (0.05) [0-0: my]

<NOMINAL> (0.2) [1-1: rabbit]

<VP> (0.003800000000000001) [2-4: has a smile]

<V> (0.5) [2-2: has]

<NP> (0.008000000000000002) [3-4: a smile]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.1) [4-4: smile]

sentence> my rabbit has a telephone

There’s no parse for [my rabbit has a telephone]

sentence> rabbit my a white has smile

There’s no parse for [rabbit my a white has smile]

sentence> a slim blue refrigerator jumped gracefully out of the bottle

There’s no parse for [a slim blue refrigerator jumped gracefully out of the bottle]

sentence> my smile has a rabbit

Parse for the sentence [my smile has a rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (2.6600000000000012E-6) [0-4: my smile has a rabbit]

<NP> (0.0010000000000000002) [0-1: my smile]

<DET> (0.05) [0-0: my]

<NOMINAL> (0.1) [1-1: smile]

<VP> (0.007600000000000002) [2-4: has a rabbit]

<V> (0.5) [2-2: has]

<NP> (0.016000000000000004) [3-4: a rabbit]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.2) [4-4: rabbit]

sentence> the cat eats my white rabbit

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 144

Parse for the sentence [the cat eats my white rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (9.576000000000004E-7) [0-5: the cat eats my white rabbit]

<NP> (0.020000000000000004) [0-1: the cat]

<DET> (0.5) [0-0: the]

<NOMINAL> (0.2) [1-1: cat]

<VP> (1.3680000000000005E-4) [2-5: eats my white rabbit]

<V> (0.1) [2-2: eats]

<NP> (0.0014400000000000005) [3-5: my white rabbit]

<DET> (0.05) [3-3: my]

<NOMINAL> (0.14400000000000004) [4-5: white rabbit]

<ADJ> (0.8) [4-4: white]

<NOMINAL> (0.2) [5-5: rabbit]

sentence> a white smile eats the cat

Parse for the sentence [a white smile eats the cat] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (3.8304000000000015E-6) [0-5: a white smile eats the cat]

<NP> (0.005760000000000002) [0-2: a white smile]

<DET> (0.4) [0-0: a]

<NOMINAL> (0.07200000000000002) [1-2: white smile]

<ADJ> (0.8) [1-1: white]

<NOMINAL> (0.1) [2-2: smile]

<VP> (0.0019000000000000004) [3-5: eats the cat]

<V> (0.1) [3-3: eats]

<NP> (0.020000000000000004) [4-5: the cat]

<DET> (0.5) [4-4: the]

<NOMINAL> (0.2) [5-5: cat]

sentence> my cat has a white rabbit

Parse for the sentence [my cat has a white rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (3.830400000000002E-6) [0-5: my cat has a white rabbit]

<NP> (0.0020000000000000005) [0-1: my cat]

<DET> (0.05) [0-0: my]

<NOMINAL> (0.2) [1-1: cat]

<VP> (0.005472000000000002) [2-5: has a white rabbit]

<V> (0.5) [2-2: has]

<NP> (0.011520000000000004) [3-5: a white rabbit]

<DET> (0.4) [3-3: a]

<NOMINAL> (0.14400000000000004) [4-5: white rabbit]

<ADJ> (0.8) [4-4: white]

<NOMINAL> (0.2) [5-5: rabbit]

sentence> my cat has white rabbit

There’s no parse for [my cat has white rabbit]

sentence> cat has a white rabbit

Parse for the sentence [cat has a white rabbit] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (3.283200000000001E-5) [0-4: cat has a white rabbit]

<NOMINAL> (0.2) [0-0: cat]

<VP> (0.005472000000000002) [1-4: has a white rabbit]

<V> (0.5) [1-1: has]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 145

<NP> (0.011520000000000004) [2-4: a white rabbit]

<DET> (0.4) [2-2: a]

<NOMINAL> (0.14400000000000004) [3-4: white rabbit]

<ADJ> (0.8) [3-3: white]

<NOMINAL> (0.2) [4-4: rabbit]

sentence> smile has my cat

Parse for the sentence [smile has my cat] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (2.8500000000000007E-6) [0-3: smile has my cat]

<NOMINAL> (0.1) [0-0: smile]

<VP> (9.500000000000002E-4) [1-3: has my cat]

<V> (0.5) [1-1: has]

<NP> (0.0020000000000000005) [2-3: my cat]

<DET> (0.05) [2-2: my]

<NOMINAL> (0.2) [3-3: cat]

sentence> can you book TWA flights

Parse for the sentence [can you book TWA flights] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (3.192E-5) [0-4: can you book TWA flights]

<AuxNP> (0.09600000000000002) [0-1: can you]

<Aux> (0.4) [0-0: can]

<Pronoun> (0.4) [1-1: you]

<VP> (0.0033249999999999994) [2-4: book TWA flights]

<V> (0.1) [2-2: book]

<NP> (0.034999999999999996) [3-4: TWA flights]

<ProperNoun> (0.4) [3-3: TWA]

<NOMINAL> (0.25) [4-4: flights]

sentence> the lion jumped through the hoop

There’s no parse for [the lion jumped through the hoop]

sentence> the trainer jumped the lion through the hoop

There’s no parse for [the trainer jumped the lion through the hoop]

sentence> the butter melted in the pan

There’s no parse for [the butter melted in the pan]

sentence> the cook melted the butter in the pan

There’s no parse for [the cook melted the butter in the pan]

sentence> the rich love their money

There’s no parse for [the rich love their money]

sentence> the rich love sometimes too

There’s no parse for [the rich love sometimes too]

sentence> the contractor built the houses last summer

There’s no parse for [the contractor built the houses last summer]

sentence> the contractor built last summer

There’s no parse for [the contractor built last summer]

sentence>

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 146

11.1.4.6.3 Realistic Grammar

Probabilistic Parsing

Serguei A. Mokhov, mokhov@cs

April 2003

Entering interactive mode... Type \q to exit.

sentence> you should submit a paper listing and report and an electronic version of your code

There’s no parse for [you should submit a paper listing and report and an electronic version of your code]

sentence> implement the CYK algorithm to find the best parse for a given sentence

There’s no parse for [implement the CYK algorithm to find the best parse for a given sentence]

sentence> your program should take as input a probabilistic grammar and a sentence and display the best parse tree along with its probability

There’s no parse for [your program should take as input a probabilistic grammar and a sentence and display the best parse tree along with its probability]

sentence> you are not required to use a specific programming language

There’s no parse for [you are not required to use a specific programming language]

sentence> Perl, CPP, C or Java are appropriate for this task

WARNING: Non-word token encountered: Token[’,’], line 1

WARNING: Non-word token encountered: Token[’,’], line 1

There’s no parse for [Perl, CPP, C or Java are appropriate for this task]

sentence> as long as you explain it, your grammar can be in any format you wish

WARNING: Non-word token encountered: Token[’,’], line 1

There’s no parse for [as long as you explain it, your grammar can be in any format you wish]

sentence> your grammar can be in any format you wish as long as you explain it

There’s no parse for [your grammar can be in any format you wish as long as you explain it]

sentence> experiment with your grammar

There’s no parse for [experiment with your grammar]

sentence> is it restrictive enough

There’s no parse for [is it restrictive enough]

sentence> does it refuse ungrammatical sentences

Parse for the sentence [does it refuse ungrammatical sentences] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (1.294887213288665E-8) [0-4: does it refuse ungrammatical sentences]

<AuxNP> (0.01999998) [0-1: does it]

<Aux> (0.1) [0-0: does]

<Pronoun> (0.333333) [1-1: it]

<VP> (6.474442540885865E-6) [2-4: refuse ungrammatical sentences]

<V> (0.0344828) [2-2: refuse]

<NOMINAL> (0.001104462402208) [3-4: ungrammatical sentences]

<ADJ> (0.0243902) [3-3: ungrammatical]

<NOMINAL> (0.0566038) [4-4: sentences]

sentence> does it cover all grammatical sentences

Parse for the sentence [does it cover all grammatical sentences] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (1.2948872132886648E-9) [0-5: does it cover all grammatical sentences]

<AuxNP> (0.01999998) [0-1: does it]

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 147

<Aux> (0.1) [0-0: does]

<Pronoun> (0.333333) [1-1: it]

<VP> (6.474442540885865E-7) [2-5: cover all grammatical sentences]

<V> (0.0344828) [2-2: cover]

<NP> (5.52231201104E-5) [3-5: all grammatical sentences]

<PreDet> (0.5) [3-3: all]

<NOMINAL> (0.001104462402208) [4-5: grammatical sentences]

<ADJ> (0.0243902) [4-4: grammatical]

<NOMINAL> (0.0566038) [5-5: sentences]

sentence> write a report to describe your code and your experimentation

There’s no parse for [write a report to describe your code and your experimentation]

sentence> your report must describe the program

There’s no parse for [your report must describe the program]

sentence> your report must describe the experiments

There’s no parse for [your report must describe the experiments]

sentence> describe your code itself

There’s no parse for [describe your code itself]

sentence> indicate the instructions necessary to run your code

There’s no parse for [indicate the instructions necessary to run your code]

sentence> describe your choice of test sentences

There’s no parse for [describe your choice of test sentences]

sentence> describe your grammar and how you developed it

Parse for the sentence [describe your grammar and how you developed it] is below:

SYNOPSIS:

<NONTERMINAL> (PROBABILITY) [SPAN: words of span]

<S> (7.381879524149979E-10) [0-7: describe your grammar and how you developed it]

<S> (4.11319751814313E-4) [0-2: describe your grammar]

<V> (0.206897) [0-0: describe]

<NOMINAL> (0.039760823193600005) [1-2: your grammar]

<ADJ> (0.439024) [1-1: your]

<NOMINAL> (0.113208) [2-2: grammar]

<ConjS> (1.7946815078995936E-5) [3-7: and how you developed it]

<Conj> (0.92) [3-3: and]

<S> (1.9507407694560798E-5) [4-7: how you developed it]

<WhNP> (0.094285785) [4-5: how you]

<WhWord> (0.5) [4-4: how]

<Pronoun> (0.571429) [5-5: you]

<VP> (0.002068965931032) [6-7: developed it]

<V> (0.0344828) [6-6: developed]

<Pronoun> (0.333333) [7-7: it]

sentence> what problems do you see with your current implementation

There’s no parse for [what problems do you see with your current implementation]

sentence> what problems do you see with your current grammar

There’s no parse for [what problems do you see with your current grammar]

sentence> how would you improve it

There’s no parse for [how would you improve it]

sentence> both the code and the report must be submitted electronically and in paper

There’s no parse for [both the code and the report must be submitted electronically and in paper]

sentence> in class, you must submit a listing of your program and results and the report

WARNING: Non-word token encountered: Token[’,’], line 1

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 148

There’s no parse for [in class, you must submit a listing of your program and results and the report]

sentence> through the electronic submission form you must submit the code of your program and results and an electronic version of your report

There’s no parse for [through the electronic submission form you must submit the code of your program and results and an electronic version of your report]

sentence>

11.1.4.7 Code

The entire source code is provided in the electronic form, but here we provide the two methods extracted
from marf/nlp/Parsing/ProbabilisticParser.java that are actual implementation of the CYK algo-
rithm and the build_tree() function, named parse() and dumpParseTree() respectively. The code
below has experienced minor clean-ups in the report version with most of the debug and error handling
information removed. For the unaltered code please refer the above mentioned file itself.

11.1.4.7.1 ProbabilisticParser.parse() -- CYK

public boolean parse()

throws SyntaxError

{

// Restore grammar from the disk

restore();

// Split the string into words

this.oWords = new Vector();

int iTokenType;

while((iTokenType = this.oStreamTokenizer.nextToken()) != StreamTokenizer.TT_EOF)

{

switch(iTokenType)

{

case StreamTokenizer.TT_WORD:

{

this.oWords.add(new String(this.oStreamTokenizer.sval));

break;

}

case StreamTokenizer.TT_NUMBER:

default:

{

System.err.println("WARNING: Non-word token encountered: " + this.oStreamTokenizer);

break;

}

}

}

// CYK

Vector oNonTerminals = this.oGrammar.getNonTerminalList();

this.adParseMatrix = new double[this.oWords.size()][this.oWords.size()][oNonTerminals.size()];

this.aoBack = new Vector[this.oWords.size()][this.oWords.size()][oNonTerminals.size()];

// Base case

for(int i = 0; i < this.oWords.size(); i++)

{

String strTerminal = this.oWords.elementAt(i).toString();

/*

* Fail-fast: if the terminal is not in the grammar (no rule ’A->wd’ found),

* there is no point to compute the parse

*/

if(this.oGrammar.containsTerminal(strTerminal) == -1)

{

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 149

return false;

}

for(int A = 0; A < oNonTerminals.size(); A++)

{

ProbabilisticRule oRule = (ProbabilisticRule)this.oGrammar.getRule(strTerminal, A);

// Current pair: ’A->wd’ does not form a Rule

if(oRule == null)

{

continue;

}

this.adParseMatrix[i][i][A] = oRule.getProbability();

}

}

/*

* Recursive case

* (’recursive’ as authors call it, but it’s implemented iteratively

* and me being just a copy-cat here)

*/

for(int iSpan = 2; iSpan <= this.oWords.size(); iSpan++)

{

for(int iBegin = 0; iBegin < this.oWords.size() - iSpan + 1; iBegin++)

{

int iEnd = iBegin + iSpan - 1;

// For every split m of the incoming sentence ...

for(int m = iBegin; m <= iEnd - 1; m++)

{

// Check how the split divides B and C in A->BC

for(int iA = 0; iA < oNonTerminals.size(); iA++)

{

for(int iB = 0; iB < oNonTerminals.size(); iB++)

{

for(int iC = 0; iC < oNonTerminals.size(); iC++)

{

ProbabilisticRule oRule = (ProbabilisticRule)this.oGrammar.getRule(iA, iB, iC);

if(oRule == null)

{

continue;

}

double dProb =

this.adParseMatrix[iBegin][m][iB] *

this.adParseMatrix[m + 1][iEnd][iC] *

oRule.getProbability();

if(dProb > this.adParseMatrix[iBegin][iEnd][iA])

{

this.adParseMatrix[iBegin][iEnd][iA] = dProb;

Vector oBackIndices = new Vector();

oBackIndices.add(new Integer(m));

oBackIndices.add(new Integer(iB));

oBackIndices.add(new Integer(iC));

this.aoBack[iBegin][iEnd][iA] = oBackIndices;

}

} // for C

} // for B

} // for A

} // split

}

} // "recursive" case

// No parse

if(this.adParseMatrix[0][this.oWords.size() - 1][0] == 0)

{

return false;

}

return true;

}

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 150

11.1.4.7.2 ProbabilisticParser.dmpParseTree() -- build tree()

public void dumpParseTree(int piLevel, int i, int j, int piA)

{

NonTerminal oLHS = (NonTerminal)this.oGrammar.getNonTerminalList().elementAt(piA);

indent(piLevel);

// Termination case

if(this.aoBack[i][j][piA] == null)

{

return;

}

// Recursive case

int m = ((Integer)this.aoBack[i][j][piA].elementAt(0)).intValue();

int iB = ((Integer)this.aoBack[i][j][piA].elementAt(1)).intValue();

int iC = ((Integer)this.aoBack[i][j][piA].elementAt(2)).intValue();

dumpParseTree(piLevel + 1, i, m, iB);

dumpParseTree(piLevel + 1, m + 1, j, iC);

}

11.2 MARF Testing Applications

11.2.1 TestFilters

Revision : 1.7

TestFilters is one of the testing applications in MARF. It tests how four types of FFT-filter-based pre-
processors work with simulated or real wave type sound samples. From user’s point of view, TestFilters
provides with usage, preprocessors, and loaders command-line options. By entering --help, or -h, or
when there are no arguments, the usage information will be displayed. It explains the arguments used in
TestFilters. The first argument is the type of preprocessor/filter. These are high-pass filter (--high),
low-pass filter (--low); band-pass filter (--band); high frequency boost preprocessor (--boost) to be cho-
sen. Next argument is the type of loader to use to load initial testing sample. TestFilters uses two
types of loaders, SineLoader and WAVLoader. Users should enter either --sine or --wave as the second
argument to specify the desired loader. The argument --sine uses SineLoader that will generate a plain
sine wave to be fed to the selected preprocessor. While the --wave argument uses WAVLoader to load a real
wave sound sample. In the latter case, users need to input the third argument – sample file in the WAV
format to feed to WAVLoader. After selecting all necessary arguments, user can run and get the output of
TestFilters within seconds.

Complete usage information:

Usage:

java TestFilters PREPROCESSOR LOADER [SAMPLEFILE]

java TestFilters --help | -h

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 151

displays this help and exits

java TestFilters --version

displays application and MARF versions

Where PREPROCESSOR is one of the following:

--high use high-pass filter

--band use band-pass filter

--low use low-pass filter

--boost use high-frequency-boost preprocessor

--highpassboost use high-pass-and-boost preprocessor

Where LOADER is one of the following:

--sine use SineLoader (generated sine wave)

--wave use WAVLoader; requires a SAMPLEFILE argument

The application is made to exercise the following MARF modules:

The main are the FFT-based filters in the marf.Preprocessing.FFTFilter.* package.

1. BandpassFilter

2. HighFrequencyBoost

3. HighPassFilter

4. LowPassFilter

Additionally, some other units were employed in this application:

1. marf.MARF

2. marf.util.OptionProcessor

3. marf.Storage.Sample

4. marf.Storage.SampleLoader

5. marf.Storage.WAVLoader

6. marf.Preprocessing.Preprocessing

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 152

The main MARF module enumerates these preprocessing modules as HIGH FREQUENCY BOOST FFT FILTER,
BANDPASS FFT FILTER, LOW PASS FFT FILTER, and HIGH PASS FFT FILTER, and incoming sample file for-
mat as WAV, SINE. OptionProcessor helps maintaining and validating command-line options. Sample

maintains incoming and processed sample data. SampleLoader provides sample loading interface for all
the MARF loaders. It must be overridden by a concrete sample loader such as SineLoader or WAVLoader.
Preprocessing does general preprocessing such as preprocess() (overridden by the filters), normalize(),
removeSilence() and removeNoise() out of which for this application the former three are used. In the
end, above modules work together to test the work of the filters and produce the output to STDOUT.
The output of TestFilters is the filtered data from the original signal fed to each of the preprocessors.
It provides both users and programmers internal information of the effect of MARF preprocessors so they
can be compared with the expected output in the expected folder to detect any errors if the underlying
algorithm has been changed.

11.2.2 TestLPC

Revision : 1.5

The TestLPC application targets the LPC unit testing as a preprocessing module. Through a number
of options it also allows choosing between two implemented loaders – WAVLoader and SineLoader. To
faciliate option processing marf.util.OptionProcessor used that provides an ability of maintaining and
validating valid/active option sets. The application also utilizes the Dummy preprocessing module to perform
the normalization of incoming sample.

The application supports the following set of options:

• --help or -h cause the application to display the usage information and exit. The usage information
is also displayed if no option was supplied.

• --sine forces the use of SineLoader for sample data generation. The output of this option is also
saved under expected/sine.out for regression testing.

• --wave forces the application to use the WAVLoader. This option requires a mandatory filename
argument of a wave file to run the LPC algorithm against.

Complete usage information:

Usage:

java TestLPC --help | -h

displays this help and exits

java TestLPC --version

displays application and MARF versions

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 153

java TestLPC --sine

runs the LPC algorithm on a generated sine wave

java TestLPC --wave <wave-file>

runs the LPC algorithm against specified voice sample

11.2.3 TestFFT

Revision : 1.6

TestFFT is one of the testing applications in MARF. It aims to test how the FFT (Fast Fourier
Transform) algorithm works in MARFFeatureExtraction by loading simulated or real wave sound samples.

From user’s point of view, TestFFT provides with usage and loaders command-line options. By entering
--help, or -h, or even no arguments, the usage information will be displayed. It explains the arguments
used in TestFFT. Another argument is the type of loader. TestFFT uses two types of loaders, Sineloader
and WAVLoader. Users can enter --sine or --wave as the second argument. The argument --sine uses
SineLoader that will generate a plain sine wave to be fed to a generic preprocessor. If the argument
--wave is specified, the application uses WAVLoader to load a wave sample from file. In the latter case,
users need to supply one more argument – sample file in the format of *.wav to be loaded by WAVLoader.
After selecting all necessary arguments, user can run and get the output of TestFFT within seconds.

Complete usage information:

Usage:

java TestFFT --help | -h

displays this help and exits

java TestFFT --version

displays application and MARF versions

java TestFFT --sine

runs the FFT algorithm on a generated sine wave

java TestFFT --wave <wave-file>

runs the FFT algorithm against specified voice sample

The application is made to exercise the MARF’s FFT-based feature extraction algorithm located in
the marf.FeatureExtraction.FFT package. Additionally, the following MARF modules are utilized:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 154

1. marf.MARF

2. marf.util.OptionProcessor

3. marf.Storage.Sample

4. marf.Storage.SampleLoader

5. marf.Storage.WAVLoader

6. marf.Preprocessing.Dummy

The main MARF module enumerates incoming sample file format as WAV, SINE. OptionProcessor helps
maintain and validate command-line options. Sample maintains and processed incoming sample data.
SampleLoader provides sample loading interface for all the MARF loaders. It must be overridden by a
concrete sample loader such as SineLoader or WAVLoader. Preprocessing does general preprocessing such
with preprocess() (overridden by Dummy), normalize(), removeSilence() and removeNoise() out of
which for this application the former three are used. Then, processed data will be serve for an parameter
of FeatureExtraction.FFT.FFT to extract sample’s features. In the end, above modules work together
to test the work of the FFT algorithm and produce the output to STDOUT.

As we know, the output of TestFFT extracts the features data by FFT feature extraction algorithm.
It gives both users and programmers direct information of the effect of MARF feature extraction, and
can be compared with the expected output in the expected folder to detect any errors if the underlying
algorithm has been changed.

11.2.4 TestWaveLoader

Revision : 1.5

TestWaveLoader is one of the testing applications in MARF. It tests functionality of the WAVLoader

of MARF.

From user’s point of view, TestWaveLoader provides with usage, input wave sample, output wave
sample, and output textual file command-line options. By entering --help, or -h, or when there are no
arguments, the usage information will be displayed. It explains the arguments used in TestWaveLoader.
The first argument is an input wave sample file whose name is a mandatory argument. The second and
the third arguments are the output wave sample file and output textual sample file of the loaded input
sample. The names of the output files are optional arguments. If user does not provide any or both of the
last two arguments, the output files will be saved in the files provided by TestWaveLoader.

Complete usage information:

Usage:

java TestWaveLoader --help | -h

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 155

displays usage information and exits

java TestWaveLoader --version

displays application and MARF versions

java TestWaveLoader <input-wave-sample> [<output-wave-sample> [<output-txt-sample>]]

loads a wave sample from the <input-wave-sample> file and

stores the output wave sample in <output-wave-sample> and

its textual equivalent is stored in <output-txt-sample>. If

the second argument if omitted, the output file name is

assumed to be "out.<input-wave-sample>". Likewise, if

the third argument if omitted, the output file name is

assumed to be "<output-wave-sample>.txt".

The application is made to exercise the following MARF modules. The main module is the WAVLoader

in the marf.Storage.Loaders package. the Sample and the SampleLoader modules in the marf.Storage

help WAVLoader prepare loading wave files. Sample maintains and processes incoming sample data.
SampleLoader provides sample loading interface for all the MARF loaders. It must be overridden by
a concrete sample loader. For loading wave samples, SampleLoader needs WAVLoader implementation.
Three modules work together to load in and write back a wave sample whose name was provided by users
in the first argument, to save the loaded sample into a newly-named wave file, to save loaded input data
into a data file referenced by oDatFile, and to output sample’s duration and size to STDOUT.

As we know, the output of TestWaveLoader saves the loaded wave sample in a newly named output
wave file. Its output also saves the input file data into a textual file. TestWaveLoader gives both users and
programmers direct information of the results of MARF wave loader. The output sample can be compared
with the expected output in the expected folder to detect any errors.

11.2.5 TestLoaders

Revision : 1.4

TestLoaders is another testing applications of MARF. It generalizes the testing machinery of TestWaveLoader
for all possible loaders we may have. For now, it tests functionality of the WAVLoader and SineLoader of
MARF, the only two implemented loaders; the others give non-implemented exceptions instead.

From user’s point of view, TestLoaders provides with usage, loader types, input sample, output
sample, and output textual file command-line options. By entering --help, or -h, or when there are
no arguments, the usage information will be displayed. Entering --version, the TestLoaders’ version

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 156

and MARF’s version is displayed. The usage info explains the arguments used in TestLoaders. The first
argument is a type of loader that is a mandatory argument. The second argument is input file name that
is mandatory for all loaders except for SineLoader. The third and forth arguments are the output wave
sample file and output textual sample file names of the loaded input sample. The names of the output
files are optional arguments. If user does not provide any or both of the last two arguments, the output
files will be saved in the file names derived from the original.

Complete usage information:

Usage:

java TestLoaders --help | -h

displays usage information and exits

java TestLoaders --version

displays TestLoaders version and MARF’s version and exits

java TestLoaders <LOADER> [<input-sound-sample>] [<output-sound-sample> [<output-txt-sample>]]

selects a loader from various of loaders according to the LOADER option

and then loads a corresponding type of sample from

the <input-sound-sample> file and stores the output sound sample in

<output-sound-sample> and its textual equivalent is stored in <output-txt-sample>.

If the second argument if omitted, the output file name is

assumed to be "out.<input-sound-sample>". Likewise,

if the third argument omitted, the output file name is

assumed to be "<output-sound-sample>.txt".

Where LOADER is one of the following:

--sine use SineLoader (generated sine wave)

--wave use WAVLoader; requires a <input-sound-sample> argument

--mp3 use MP3Loader; requires a <input-sound-sample> argument

--ulaw use ULAWLoader; requires a <input-sound-sample> argument

--aiff use AIFFLoader; requires a <input-sound-sample> argument

--aiffc use AIFFCLoader; requires a <input-sound-sample> argument

--au use AULoader; requires a <input-sound-sample> argument

--snd use SNDLoader; requires a <input-sound-sample> argument

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 157

--midi use MIDILoader; requires a <input-sound-sample> argument

The application is made to exercise the following MARF modules. The main modules for testing are
in the marf.Storage.Loaders package. The OptionProcessor module in the marf.util helps handling
the different loader types according to the users input argument. The Sample and the SampleLoader

modules in the marf.Storage help WAVLoader prepare loading input files. Sample maintains and processes
incoming sample data. SampleLoader provides sample loading interface for all the MARF loaders. It must
be overridden by a concrete sample loader. The modules work together to load in and write back a sample,
and save the loaded sample into a file, to save loaded input data into a data file referenced by oDatFile,
and to output sample’s duration and size to STDOUT. While for loading sine samples, it needs SineLoader
implementation, and instead of saving data file, it saves a csv file referenced by oDatFile.

The output of TestLoaders saves the loaded wave sample in a newly named output wave file. Its
output also saves the input file data into a textual file. TestLoaders gives both users and programmers
direct information of the results of MARF loaders. Input sample can be compared with the expected
output in the expected folder to detect any errors.

11.2.6 MathTestApp

Revision : 1.3

The MathTestApp application targets testing of the math-related implementations in the marf.math

package. As of this writing, the application mainy exercises the Matrix class as this is the one used by
the MahalanobisDistance classifier. It also does the necessary testing of the Vector class as well.

The application supports the following set of options:

• --help or -h cause the application to display the usage information and exit.

• --version displays the application’s and the unrelying MARF’s versions and exits.

Complete usage information:

Usage:

java MathTestApp

runs the tests

java MathTestApp --help | -h

displays this help and exits

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 158

java MathTestApp --version

displays application and MARF versions

java MathTestApp --debug

run tests with the debug mode enabled

Before running tests, the application validates the MARF version, and then produces the output
to STDOUT of various linear matrix operations, such as inversion, identity, multiplication, transposal,
scaling, rotation, translation, and shear. The stored output in the expected folder, math.out, contains
expected output the authors believe is correct and which is used in the regression testing.

11.2.7 TestPlugin

Revision : 1.2

The TestPlugin testing application in MARF tests and serves as an example of how to write SampleLoader,
Preprocessing, FeatureExtraction, and Classification plugins to be used by the main MARF’s pipeline.

Complete usage information:

Usage:

java TestFFT --help | -h

displays this help and exits

java TestFFT --version

displays application and MARF versions

java TestFFT --sine

runs the FFT algorithm on a generated sine wave

java TestFFT --wave <wave-file>

runs the FFT algorithm against specified voice sample

The application is made to exercise the MARF’s interfaces ISampleLoader, IPreprocessing,
IFeatureExtraction, and IClassification along with the MARF itself. These interfaces are implemented
in the variety of ways. The sample loader is nearly identical to the functionality of WAVLoader except that
it yanks out checks for sample format making it “unrestricted” (for illustratory purposes). Random
preprocessing is used to multiply the incoming amplitudes by a pseudo-random Gausian distribution. The
feature extraction is then performed by convering the incoming variable-length input into chunks of fixed

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 159

size elements of which are added pairwise. Finally, the classification does summing, logical AND, OR,
and XOR “hashing” and applying a modulus of the number of speakers we have. The actual samples are
either the real wave samples or a generated sine wave used.

11.2.8 TestNN

Revision : 1.1

TestNN is one a testing applications in MARF that aims to test how the neural network algorithm
described in Section 5.5.6 works in Classification.

From user’s point of view, TestNN provides with usage and loaders command-line options. By entering
--help or -h the usage information will be displayed.

Complete usage information:

Usage:

java TestNN [OPTIONS] <sample-xml-file>

java TestNN --help | -h | --version

java -jar TestNN.jar [OPTIONS] <sample-xml-file>

java -jar TestNN.jar --help | -h | --version

Options (one or more of the following):

--debug - enable debugging

-dtd - validate the DTD of the corresponding XML document

-error=VALUE - specify minimum desired error

-epochs=VALUE - specify numer of epochs for training

-train=NUMBER - number of training interations

-test=NUMBER - number of testing iterations

The application is made to exercise the MARF’s implementation of the artificial neural network algo-
rithm located in the marf.Classification.NeuralNetwork package. Additionally, the following MARF

modules are utilized:

1. marf.util.OptionProcessor

2. marf.util.Arrays

3. marf.util.Debug

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 160

11.3 External Applications

11.3.1 GIPSY

GIPSY stands for General Intensional Programming System [RG06], which is a distributed research,
development, and investigation platform about intensional and hybrid programming languages. GIPSY
is a world on its own developed at Concordia University and for more information on the system please
see [RG06] and [Mok05]. GIPSY makes use of a variety of MARF’s utility and storage modules, as of this
writing this includes:

• BaseThread for most threading part of the GIPSY for multithreaded compilation and execution.

• ExpandedThreadGroup to group a number of compiler or executor threads and have a group control
over them.

• Debug for, well, debugging

• Logger to log compiler and executor activities

• StorageManager for binary serialization

• OptionProcessor for option processing in five core GIPSY utilities

• Arrays for common arrays functionality

There is a provision to also use MARF’s NLP modules.

11.3.2 ENCSAssetsDesktop

This is a private little application developed for the Engineering and Computer Science faculty of Concordia
University’s Faculty Information Systems team. The application synchronize inventory data between a
Palm device database and a relational database powering an online inventory application. This application
primarily exercises:

• BaseThread for most threading part of the GIPSY for multithreaded compilation and execution.

• ExpandedThreadGroup to group a number of compiler or executor threads and have a group control
over them.

• Arrays for common arrays functionality

• ByteUtils for any-type-to-byte-array-and-back conversion.

11.3.3 ENCSAssets

This is a web frontend to an inventory database developed by the same team as in Section 11.3.2. It
primarily exercises the threading and arrays parts of MARF, namely BaseThread and Arrays.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 161

11.3.4 ENCSAssetsCron

This is a cron-oriented frontend to an inventory database developed by the same team as in Section 11.3.2.
It primarily exercises the OptionProcessor of MARF.

Chapter 12

Conclusions

Revision : 1.13

12.1 Review of Results

Our best configuration yielded 82.76 % correctness of our work when identifying subjects. Having a total
of 29 testing samples (including the two music bands) that means 24 subjects identified correctly out of
29.

The main reasons the recognition rate could be low is due to non-uniform sample taking, lack of
preprocessing techniques optimizations and parameter tweaking, lack of noise removal, lack or incomplete
sophisticated classification modules (e.g. Stochastic models), and lack the samples themselves to train and
test on. You are welcome to contribute in any of these areas to make the framework better.

Even though for commercial and University-level research standards 82.76 % recognition rate is con-
sidered to be low as opposed to a required minimum of 95%-97% and above, we think it is still reasonably
well off to demonstrate the framework operation.

12.2 Acknowledgments

We would like to thank Dr. Suen and Mr. Sadri for the course and help provided. This LATEX documen-
tation was possible due to an excellent introduction of it by Dr. Peter Grogono in [Gro01].

162

Bibliography

[Aks87] Sergej Timofeevich Aksakov. Zapiski ruzhejnogo ohotnika Orenburgskoj gubernii. Izd: Moskva,
Izdatel’stvo “Pravda”, 1987. http://lib.ru/lat/LITRA/AKSAKOW/rasskazy ohotnika.

txt.

[AP] transcribed by Michelle Khalifé Arabic Proverb. Jeha and Donkeys. http://preview-latex.
sourceforge.net/prv-ltx5.png.

[AriBC] anonymous translator Aristophanes. LYSISTRATA. 410 BC. http://eserver.org/drama/
aristophanes/lysistrata.txt.

[Ber05] Stefan M. Bernsee. The DFT “à pied”: Mastering The Fourier Transform in One Day. DSPdi-
mension.com, 1999-2005. http://www.dspdimension.com/data/html/dftapied.html.

[Bor03] Borland. Borland JBuilder X. Borland Software Corporation, 1997-2003. http://www.

borland.com/us/products/jbuilder/.

[Bri95] Eric Brill. Brill Tagger. 1995. http://www.cs.jhu.edu/∼brill/RBT1 14.tar.Z.

[c+04] Eclipse contributors et al. Eclipse Platform. IBM, 2000-2004. http://www.eclipse.org/

platform.

[Cha80] Geoffrey Chaucer. The Canterbury Tales. 1380. http://www.litrix.com/canterby/

cante001.htm.

[Cle49] John Cleland. FANNY HILL. MEMOIRS OF A WOMAN OF PLEASURE. 1749. http:

//wiretap.area.com/ftp.items/Library/Classic/fannyhill.txt.

[(Co] Carlo Lorenzini (Collodi). Pinocchio: Storia di un burattino. http://www.crs4.it/

Letteratura/Pinocchio/Pinocchio.html.

[Cra] Francis Marion Crawford. Greifenstein. http://digital.library.upenn.edu/webbin/

gutbook/lookup?num=6446.

[Def] Daniel Defoe. The Fortunes and Misfortunes of the Famous Moll Flanders. http://digital.
library.upenn.edu/webbin/gutbook/lookup?num=370.

163

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 164

[ebTW] Joseph Devlin; edited by Theodore Waters. How to Speak and Write Correctly. http:

//digital.library.upenn.edu/webbin/gutbook/lookup?num=6409.

[ec] Radev et co. Bulgarian Poetry. http://www.cs.columbia.edu/∼radev/faq/poetry/

poetry-server.cgi.

[Fla97] D. Flanagan. Java in a Nutshell. O’Reily & Associates, Inc., second edition, 1997. ISBN
1-56592-262-X.

[Fou05] Apache Foundation. Apache Jakarta Tomcat. apache.org, 1999-2005. http://jakarta.

apache.org/tomcat/index.html.

[Fuh] Israel Fuhrmann. Various Poetry. http://www.interlog.com/∼jfuhrman/#Poems.

[GB04] Erich Gamma and Kent Beck. JUnit. Object Mentor, Inc., 2001-2004. http://junit.org/.

[Gro01] Peter Grogono. A LATEX2e Gallimaufry. Techniques, Tips, and Traps. Department of
Computer Science and Software Engineering, Concordia University, March 2001. http:

//www.cse.concordia.ca/∼grogono/Writings/gallimaufry.pdf.

[Hed92] Abdelsalam Heddaya. Qalam: A Convention for Morphological Arabic-Latin-Arabic Translit-
eration. 1985-1992. http://eserver.org/langs/qalam.txt.

[IJ02] Ifeachor and Jervis. Speech Communications. Prentice Hall. New Jersey, US., 2002.

[iso] ISO 639-2: Codes for the Representation of Names of Languages. http://lcweb.loc.gov/

standards/iso639-2/englangn.html.

[JM00] Daniel S. Jurafsky and James H. Martin. Speech and Language Processing. Prentice-Hall,
Inc., Pearson Higher Education, Upper Saddle River, New Jersey 07458, 2000. ISBN 0-13-
095069-6.

[Joy] James Joyce. Ulysses. ftp://ftp.trentu.ca/pub/jjoyce/ulysses/ascii texts/.

[Mar] James H. Martin. CYK Probabilistic Parsing Algorithm. http://www.cs.colorado.edu/
∼martin/SLP/New Pages/pg455.pdf.

[Mic04] Sun Microsystems. NetBeans 4.0. Sun Microsystems, Inc., December 2004. http://www.

netbeans.org.

[Mic05] Sun Microsystems. The Java Website. Sun Microsystems, Inc., 1994-2005. http://java.

sun.com.

[Mok05] Serguei A. Mokhov. Towards Hybrid Intensional Programming with JLucid, Objective Lucid,
and General Imperative Compiler Framework in the GIPSY. Master’s thesis, Department of
Computer Science and Software Engineering, Concordia University, October 2005. ISBN
0494102934.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 165

[mus] muslimnet.net. Transliteration of the Qur’an. http://www.usc.edu/dept/MSA/quran/

transliteration/index.html.

[O’S00] Douglas O’Shaughnessy. Speech Communications. IEEE Press. New Jersey, US., 2000.

[Pre93] William H. Press. Numerical Recipes in C. Cambridge University Press. Cambridge, UK.,
second edition, 1993.

[Pro95] David K. Probst. The United States Needs a Scalable Shared-Memory Multiprocessor, But
Might Not Get One!, NCO White Paper. Concordia University, Montreal, Canada, 1995.
http://www.cs.concordia.ca/∼grynbaum/.

[RG06] The GIPSY Research and Development Group. The GIPSY Project. Department of Computer
Science and Software Engineering, Concordia University, 2002-2006. http://newton.cs.

concordia.ca/∼gipsy/.

[RN95] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall. New
Jersey, US., 1995. ISBN 0-13-103805-2.

[SMSP00] Richard Stallman, Roland McGrath, Paul Smith, and GNU Project. GNU Make. Free
Software Foundation, Inc., 1997-2000. http://www.gnu.org/software/make/.

[tbEF] Torquado Tasso; translated by Edward Fairfax. Jerusalem Delivered. http://digital.

library.upenn.edu/webbin/gutbook/lookup?num=392.

[tbMK] Annahar; transcribed by Michelle Khalifé. Arabic newspaper Annahar about Middle-East
news. http://www.annahar.com.lb/htd/front1.pdf.

[tbWCM82] Jean-Jacques Rousseau; translated by W. Conyngham Mallory. THE CONFESSIONS OF
JEAN-JACQUES ROUSSEAU. 1782. http://www.knuten.liu.se/∼bjoch509/works/

rousseau/confessions.txt.

Appendix A

Spectrogram Examples

Revision : 1.14

As produced by the Spectrogram class.

Figure A.1: LPC spectrogram obtained for ian15.wav

Figure A.2: LPC spectrogram obtained for graham13.wav

166

Appendix B

MARF Source Code

You can download the code from <http://marf.sourceforge.net>, specifically:

• The latest unstable version:
<http://marf.sourceforge.net/marf.tar.gz>

• Browse code and revision history online:
<http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/marf/>

API documentation in the HTML format can be found in the documentation distribution, or for
the latest version please consult: <http://marf.sourceforge.net/api/>. If you want to participate
in development, there is a developers version of the API: <http://marf.sourceforge.net/api-dev/>,
which includes all the private constructs into the docs as well.

The current development version can also be retrieved via CVS. The process outlined in Appendix C.

167

Appendix C

The CVS Repository

The MARF source code is stored and managed using the CVS code management system at SourceForge.
Anonymous CVS is available to pull the CVS code tree from the MARF package to your local machine.

C.1 Getting The Source Via Anonymous CVS

If you would like to keep up with the current sources on a regular basis, you can fetch them from Source-
Forge’s CVS server and then use CVS to retrieve updates from time to time.

• You will need a local copy of CVS (Concurrent Version Control System), which you can get from
<http://www.cvshome.org/> or any GNU software archive site. There is also WinCVS and CVS
mode built in JBulider if you plan to use these products on Win32 platforms.

• Do an initial login to the CVS server:

cvs -d:pserver:anonymous@marf.cvs.sourceforge.net:/cvsroot/marf login

You will be prompted for a password; just press ENTER. You should only need to do this once, since
the password will be saved in .cvspass in your home directory.

• Fetch the MARF sources:

cvs -z3 -d:pserver:anonymous@marf.cvs.sourceforge.net:/cvsroot/marf co -P marf

which installs the MARF sources into a subdirectory marf of the directory you are currently in.

If you’d like to download sample applications which use MARF:

cvs -z3 -d:pserver:anonymous@marf.cvs.sourceforge.net:/cvsroot/marf co -P apps

168

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 169

• Whenever you want to update to the latest CVS sources, cd into the marf or apps subdirectories,
and issue

cvs -z3 update -d -P

This will fetch only the changes since the last time you updated.

• You can save yourself some typing by making a file .cvsrc in your home directory that contains

cvs -z3

update -d -P

This supplies the -z3 option to all cvs commands, and the -d and -P options to cvs update. Then
you just have to say

cvs update

to update your files.

Appendix D

SpeakerIdentApp and SpeakersIdentDb

Source Code

D.1 SpeakerIdentApp.java

import java.io.File;

import java.util.Date;

import marf.MARF;

import marf.Classification.Distance.HammingDistance;

import marf.Storage.ModuleParams;

import marf.Storage.TrainingSet;

import marf.util.Debug;

import marf.util.MARFException;

import marf.util.OptionProcessor;

/**

* <p>Indentfies a speaker independently of text, based on the MARF framework,

* http://marf.sf.net.

* </p>

*

* $Id: SpeakerIdentApp.java,v 1.64 2007/06/20 04:28:44 mokhov Exp $

*

* @author Serguei Mokhov

* @author Stephen Sinclair

* @author Ian Clement

* @author Dimitrios Nicolacopoulos

* @author The MARF Research and Development Group

*

* @version 0.3.0, $Revision: 1.64 $

* @since 0.0.1

*/

public class SpeakerIdentApp

{

/*

* ----------------

* Apps. Versioning
170

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 171

* ----------------

*/

/**

* Current major version of the application.

*/

public static final int MAJOR_VERSION = 0;

/**

* Current minor version of the application.

*/

public static final int MINOR_VERSION = 3;

/**

* Current revision of the application.

*/

public static final int REVISION = 0;

/*

* ----------------------------------

* Defaults

* ----------------------------------

*/

/**

* Default file name extension for sample files; case-insensitive.

* @since 0.3.0.6

*/

public static final String DEFAULT_SAMPLE_FILE_EXTENSION = "wav";

//public static final String DEFAULT_SAMPLE_FILE_EXTENSION = "txt";

/*

* ----------------------------------

* Major and Misc Options Enumeration

* ----------------------------------

*/

/**

* Numeric equivalent of the option <code>--train</code>.

* @since 0.3.0.5

*/

public static final int OPT_TRAIN = 0;

/**

* Numeric equivalent of the option <code>--ident</code>.

* @since 0.3.0.5

*/

public static final int OPT_IDENT = 1;

/**

* Numeric equivalent of the option <code>--stats</code>.

* @since 0.3.0.5

*/

public static final int OPT_STATS = 2;

/**

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 172

* Numeric equivalent of the option <code>--reset</code>.

* @since 0.3.0.5

*/

public static final int OPT_RESET = 3;

/**

* Numeric equivalent of the option <code>--version</code>.

* @since 0.3.0.5

*/

public static final int OPT_VERSION = 4;

/**

* Numeric equivalent of the option <code>--help</code>.

* @since 0.3.0.5

*/

public static final int OPT_HELP_LONG = 5;

/**

* Numeric equivalent of the option <code>-h</code>.

* @since 0.3.0.5

*/

public static final int OPT_HELP_SHORT = 6;

/**

* Numeric equivalent of the option <code>-debug</code>.

* @since 0.3.0.5

*/

public static final int OPT_DEBUG = 7;

/**

* Numeric equivalent of the option <code>-graph</code>.

* @since 0.3.0.5

*/

public static final int OPT_GRAPH = 8;

/**

* Numeric equivalent of the option <code>-spectrogram</code>.

* @since 0.3.0.5

*/

public static final int OPT_SPECTROGRAM = 9;

/**

* Numeric equivalent of the option <code><speaker ID></code>.

* @since 0.3.0.5

*/

public static final int OPT_EXPECTED_SPEAKER_ID = 10;

/**

* Numeric equivalent of the option <code>--batch-ident</code>.

* @since 0.3.0.5

*/

public static final int OPT_BATCH_IDENT = 11;

/**

* Numeric equivalent of the option <code>--single-train</code>.

* @since 0.3.0.5

*/

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 173

public static final int OPT_SINGLE_TRAIN = 12;

/**

* Numeric equivalent of the option <code><sample-file-or-directory-name></code>.

* @since 0.3.0.5

*/

public static final int OPT_DIR_OR_FILE = 13;

/**

* Numeric equivalent of the option <code>--best-score</code>.

* @since 0.3.0.5

*/

public static final int OPT_BEST_SCORE = 14;

/**

* Numeric equivalent of the option <code>--gui</code> to have a GUI.

* @since 0.3.0.6

*/

public static final int OPT_GUI = 15;

/**

* Numeric equivalent of the option <code>-noise</code> to enable noise removal.

* @since 0.3.0.6

*/

public static final int OPT_NOISE_REMOVAL = 16;

/**

* Numeric equivalent of the option <code>-silence</code> to enable silence removal.

* @since 0.3.0.6

*/

public static final int OPT_SILENCE_REMOVAL = 17;

/*

* ---------------------

* State Data Structures

* ---------------------

*/

/**

* Instance of the database of speakers to track stats per

* configuration for all speakers.

* @since 0.3.0.5

*/

protected static SpeakersIdentDb soDBPerConfig = new SpeakersIdentDb("speakers.txt");

/**

* Instance of the database of speakers to track stats per

* speaker for all configuration.

* @since 0.3.0.6

*/

protected static SpeakersIdentDb soDBPerSpeaker = new SpeakersIdentDb("speakers.txt");

// protected static SpeakersIdentDb soDBPerConfig = new SpeakersIdentDb("languages.txt");

// protected static SpeakersIdentDb soDBPerSpeaker = new SpeakersIdentDb("languages.txt");

/**

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 174

* Intance of the option processing utility.

* @since 0.3.0.5

*/

protected static OptionProcessor soGetOpt = new OptionProcessor();

/*

* -----------------

* Static State Init

* -----------------

*/

static

{

// Main options

soGetOpt.addValidOption(OPT_TRAIN, "--train");

soGetOpt.addValidOption(OPT_SINGLE_TRAIN, "--single-train");

soGetOpt.addValidOption(OPT_IDENT, "--ident");

soGetOpt.addValidOption(OPT_BATCH_IDENT, "--batch-ident");

soGetOpt.addValidOption(OPT_STATS, "--stats");

soGetOpt.addValidOption(OPT_BEST_SCORE, "--best-score");

soGetOpt.addValidOption(OPT_VERSION, "--version");

soGetOpt.addValidOption(OPT_RESET, "--reset");

soGetOpt.addValidOption(OPT_HELP_LONG, "--help");

soGetOpt.addValidOption(OPT_HELP_SHORT, "-h");

soGetOpt.addValidOption(OPT_GUI, "--gui");

// Sample Loading

soGetOpt.addValidOption(MARF.WAV, "-wav");

soGetOpt.addValidOption(MARF.TEXT, "-text");

// Preprocessing

soGetOpt.addValidOption(OPT_NOISE_REMOVAL, "-noise");

soGetOpt.addValidOption(OPT_SILENCE_REMOVAL, "-silence");

soGetOpt.addValidOption(MARF.DUMMY, "-norm");

soGetOpt.addValidOption(MARF.HIGH_FREQUENCY_BOOST_FFT_FILTER, "-boost");

soGetOpt.addValidOption(MARF.HIGH_PASS_FFT_FILTER, "-high");

soGetOpt.addValidOption(MARF.LOW_PASS_FFT_FILTER, "-low");

soGetOpt.addValidOption(MARF.BANDPASS_FFT_FILTER, "-band");

soGetOpt.addValidOption(MARF.HIGH_PASS_BOOST_FILTER, "-highpassboost");

soGetOpt.addValidOption(MARF.RAW, "-raw");

soGetOpt.addValidOption(MARF.ENDPOINT, "-endp");

soGetOpt.addValidOption(MARF.HIGH_PASS_CFE_FILTER, "-highcfe");

soGetOpt.addValidOption(MARF.LOW_PASS_CFE_FILTER, "-lowcfe");

soGetOpt.addValidOption(MARF.BAND_PASS_CFE_FILTER, "-bandcfe");

soGetOpt.addValidOption(MARF.BAND_STOP_CFE_FILTER, "-bandstopcfe");

// Feature extraction

soGetOpt.addValidOption(MARF.FFT, "-fft");

soGetOpt.addValidOption(MARF.LPC, "-lpc");

soGetOpt.addValidOption(MARF.RANDOM_FEATURE_EXTRACTION, "-randfe");

soGetOpt.addValidOption(MARF.MIN_MAX_AMPLITUDES, "-minmax");

soGetOpt.addValidOption(MARF.FEATURE_EXTRACTION_AGGREGATOR, "-aggr");

soGetOpt.addValidOption(MARF.F0, "-f0");

soGetOpt.addValidOption(MARF.SEGMENTATION, "-segm");

soGetOpt.addValidOption(MARF.CEPSTRAL, "-cepstral");

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 175

// Classification

soGetOpt.addValidOption(MARF.NEURAL_NETWORK, "-nn");

soGetOpt.addValidOption(MARF.EUCLIDEAN_DISTANCE, "-eucl");

soGetOpt.addValidOption(MARF.CHEBYSHEV_DISTANCE, "-cheb");

soGetOpt.addValidOption(MARF.MINKOWSKI_DISTANCE, "-mink");

soGetOpt.addValidOption(MARF.MAHALANOBIS_DISTANCE, "-mah");

soGetOpt.addValidOption(MARF.RANDOM_CLASSIFICATION, "-randcl");

soGetOpt.addValidOption(MARF.DIFF_DISTANCE, "-diff");

soGetOpt.addValidOption(MARF.ZIPFS_LAW, "-zipf");

soGetOpt.addValidOption(MARF.MARKOV, "-markov");

soGetOpt.addValidOption(MARF.HAMMING_DISTANCE, "-hamming");

soGetOpt.addValidOption(MARF.COSINE_SIMILARITY_MEASURE, "-cos");

// Misc

soGetOpt.addValidOption(OPT_SPECTROGRAM, "-spectrogram");

soGetOpt.addValidOption(OPT_DEBUG, "-debug");

soGetOpt.addValidOption(OPT_GRAPH, "-graph");

}

/**

* Main body.

* @param argv command-line arguments

*/

public static final void main(String[] argv)

{

try

{

// Since some new API is always introduced...

validateVersions();

/*

* Load the speakers database

*/

soDBPerConfig.connect();

soDBPerConfig.query();

soDBPerSpeaker.connect();

soDBPerSpeaker.query();

soDBPerConfig.setFilename("config." + soDBPerConfig.getFilename());

soDBPerSpeaker.setFilename("speaker." + soDBPerSpeaker.getFilename());

setDefaultConfig();

// Parse extra arguments

int iValidOptions = soGetOpt.parse(argv);

if(iValidOptions == 0)

{

throw new Exception("No valid options found: " + soGetOpt);

}

setCustomConfig();

/*

* If supplied in the command line, the system when classifying,

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 176

* will output this ID next to the guessed one.

*/

int iExpectedID = -1;

switch(soGetOpt.getInvalidOptions().size())

{

// Unknown

case 0:

{

iExpectedID = -1;

break;

}

/*

* Extract and make active and valid option out of

* a filename and and an expected speaker ID. An

* assumption is that the expected speaker ID is

* always second on the command line somewhere after

* a file or directory name. Presence of the expected

* speaker ID always implies presence of the file

* or directory argument.

*/

case 2:

{

try

{

iExpectedID = Integer.parseInt(soGetOpt.getInvalidOptions().elementAt(2).toString());

soGetOpt.addActiveOption(OPT_EXPECTED_SPEAKER_ID, soGetOpt.getInvalidOptions().elementAt(2).toString());

}

/*

* May happend when trying to get expected ID,

* but the argument doesn’t parse as an int.

*/

catch(NumberFormatException e)

{

iExpectedID = -1;

System.err.println

(

"SpeakerIdentApp: WARNING: could not parse expected speaker ID ("

+ e.getMessage() + "), ignoring..."

);

}

// No break required as the file or directory

// must always be present. Also, the clearance

// of the invalid options need to be postponed.

}

/*

* In the case of a single invalid option

* always assume it is either a filename

* or a directory name for the --ident

* or --train options.

*/

case 1:

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 177

{

soGetOpt.addActiveOption(OPT_DIR_OR_FILE, soGetOpt.getInvalidOptions().firstElement().toString());

soGetOpt.getInvalidOptions().clear();

break;

}

default:

{

throw new Exception("Unrecognized options found: " + soGetOpt.getInvalidOptions());

}

}

// Set misc configuration

MARF.setDumpSpectrogram(soGetOpt.isActiveOption(OPT_SPECTROGRAM));

MARF.setDumpWaveGraph(soGetOpt.isActiveOption(OPT_GRAPH));

Debug.enableDebug(soGetOpt.isActiveOption(OPT_DEBUG));

Debug.debug("Option set: " + soGetOpt);

int iMainOption = soGetOpt.getOption(argv[0]);

switch(iMainOption)

{

/*

* --------------

* Identification

* --------------

*/

// Single case

case OPT_IDENT:

{

ident(getConfigString(argv), soGetOpt.getOption(OPT_DIR_OR_FILE), iExpectedID);

break;

}

// A directory with files for identification

case OPT_BATCH_IDENT:

{

// Store config and error/successes for that config

String strConfig = getConfigString(argv);

// Dir contents

File[] aoSampleFiles = new File(soGetOpt.getOption(OPT_DIR_OR_FILE)).listFiles();

for(int i = 0; i < aoSampleFiles.length; i++)

{

String strFileName = aoSampleFiles[i].getPath();

if(aoSampleFiles[i].isFile() && strFileName.toLowerCase().endsWith("." + DEFAULT_SAMPLE_FILE_EXTENSION))

{

ident(strConfig, strFileName, iExpectedID);

}

}

break;

}

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 178

/*

* --------

* Training

* --------

*/

// Add a single smaple to the training set

case OPT_SINGLE_TRAIN:

{

train(soGetOpt.getOption(OPT_DIR_OR_FILE));

System.out.println("Done training with file \"" + soGetOpt.getOption(OPT_DIR_OR_FILE) + "\".");

break;

}

// Train on a directory of files

case OPT_TRAIN:

{

try

{

// Dir contents

File[] aoSampleFiles = new File(soGetOpt.getOption(OPT_DIR_OR_FILE)).listFiles();

Debug.debug("Files array: " + aoSampleFiles);

if(Debug.isDebugOn())

{

System.getProperties().list(System.err);

}

String strFileName = "";

// XXX: this loop has to be in MARF

for(int i = 0; i < aoSampleFiles.length; i++)

{

strFileName = aoSampleFiles[i].getPath();

if(aoSampleFiles[i].isFile() && strFileName.toLowerCase().endsWith("." + DEFAULT_SAMPLE_FILE_EXTENSION))

{

train(strFileName);

}

}

}

catch(NullPointerException e)

{

System.err.println("Folder \"" + soGetOpt.getOption(OPT_DIR_OR_FILE) + "\" not found.");

e.printStackTrace(System.err);

System.exit(-1);

}

System.out.println("Done training on folder \"" + soGetOpt.getOption(OPT_DIR_OR_FILE) + "\".");

break;

}

/*

* -----

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 179

* Stats

* -----

*/

case OPT_STATS:

{

soDBPerConfig.restore();

soDBPerConfig.printStats();

soDBPerSpeaker.restore();

soDBPerSpeaker.printStats();

break;

}

/*

* Best Result with Stats

*/

case OPT_BEST_SCORE:

{

soDBPerConfig.restore();

soDBPerConfig.printStats(true);

soDBPerSpeaker.restore();

soDBPerSpeaker.printStats(true);

break;

}

/*

* Reset Stats

*/

case OPT_RESET:

{

soDBPerConfig.resetStats();

soDBPerSpeaker.resetStats();

System.out.println("SpeakerIdentApp: Statistics has been reset.");

break;

}

/*

* Versioning

*/

case OPT_VERSION:

{

System.out.println("Text-Independent Speaker Identification Application, v." + getVersion());

System.out.println("Using MARF, v." + MARF.getVersion());

validateVersions();

break;

}

/*

* Help

*/

case OPT_HELP_SHORT:

case OPT_HELP_LONG:

{

usage();

break;

}

/*

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 180

* Invalid major option

*/

default:

{

throw new Exception("Unrecognized option: " + argv[0]);

}

} // major option switch

} // try

/*

* No arguments have been specified

*/

catch(ArrayIndexOutOfBoundsException e)

{

System.err.println("No arguments have been specified.");

//if(Debug.isDebugOn())

{

System.err.println(e.getMessage());

e.printStackTrace(System.err);

}

usage();

}

/*

* MARF-specific errors

*/

catch(MARFException e)

{

System.err.println(e.getMessage());

e.printStackTrace(System.err);

}

/*

* Invalid option and/or option argument

*/

catch(Exception e)

{

System.err.println(e.getMessage());

e.printStackTrace(System.err);

usage();

}

/*

* Regardless whatever happens, close the db connection.

*/

finally

{

try

{

Debug.debug("Closing DB connection...");

soDBPerConfig.close();

soDBPerSpeaker.close();

}

catch(Exception e)

{

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 181

Debug.debug("Closing DB connection failed: " + e.getMessage());

e.printStackTrace(System.err);

System.exit(-1);

}

}

}

/**

* Indetifies a speaker using MARF given configuration,

* wave filename, and possibly expected speaker ID.

*

* @param pstrConfig configuration string for stats

* @param pstrFilename name of the wave file with voice sample to identify

* @param piExpectedID expected speaker ID; if -1 then no stats is kept

*

* @throws MARFException in case of any error while processing is in MARF

* @since 0.3.0.5

*/

public static final void ident(String pstrConfig, String pstrFilename, int piExpectedID)

throws MARFException

{

/*

* If no expected speaker present on the command line,

* attempt to fetch it from the database by filename.

*/

if(piExpectedID < 0)

{

piExpectedID = soDBPerConfig.getIDByFilename(pstrFilename, false);

}

MARF.setSampleFile(pstrFilename);

MARF.recognize();

// First guess

int iIdentifiedID = MARF.queryResultID();

// Second best

int iSecondClosestID = MARF.getResultSet().getSecondClosestID();

System.out.println(" File: " + pstrFilename);

System.out.println(" Config: " + pstrConfig);

System.out.println(" Speaker’s ID: " + iIdentifiedID);

System.out.println(" Speaker identified: " + soDBPerConfig.getName(iIdentifiedID));

/*

* Only collect stats if we have expected speaker

*/

if(piExpectedID > 0)

{

System.out.println("Expected Speaker’s ID: " + piExpectedID);

System.out.println(" Expected Speaker: " + soDBPerConfig.getName(piExpectedID));

soDBPerConfig.restore();

soDBPerSpeaker.restore();

{

// 1st match

soDBPerConfig.addStats(pstrConfig, (iIdentifiedID == piExpectedID));

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 182

soDBPerSpeaker.addStats(soDBPerConfig.getName(piExpectedID), (iIdentifiedID == piExpectedID));

// 2nd best: must be true if either 1st true or second true (or both :))

boolean bSecondBest =

iIdentifiedID == piExpectedID

||

iSecondClosestID == piExpectedID;

soDBPerConfig.addStats(pstrConfig, bSecondBest, true);

soDBPerSpeaker.addStats(soDBPerConfig.getName(piExpectedID), bSecondBest, true);

}

soDBPerConfig.dump();

soDBPerSpeaker.dump();

}

System.out.println(" Second Best ID: " + iSecondClosestID);

System.out.println(" Second Best Name: " + soDBPerConfig.getName(iSecondClosestID));

System.out.println(" Date/time: " + new Date());

System.out.println("----------------------------8<------------------------------");

}

/**

* Updates training set with a new sample from a given file.

*

* @param pstrFilename name of the wave file with voice sample train the system on

*

* @throws MARFException in case of any error while processing is in MARF

* @since 0.3.0.5

*/

public static final void train(String pstrFilename)

throws MARFException

{

MARF.setSampleFile(pstrFilename);

int iID = soDBPerConfig.getIDByFilename(pstrFilename, true);

if(iID == -1)

{

System.out.println("No speaker found for \"" + pstrFilename + "\" for training.");

}

else

{

MARF.setCurrentSubject(iID);

MARF.train();

}

}

/**

* Displays application’s usage information and exits.

*/

private static final void usage()

{

System.out.println

(

"Usage:\n" +

" java SpeakerIdentApp --train <samples-dir> [options] -- train mode\n" +

" --single-train <sample> [options] -- add a single sample to the training set\n" +

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 183

" --ident <sample> [options] -- identification mode\n" +

" --batch-ident <samples-dir> [options] -- batch identification mode\n" +

" --gui -- use GUI as a user interface\n" +

" --stats=[per-config|per-speaker|both] -- display stats (default is per-config)\n" +

" --best-score -- display best classification result\n" +

" --reset -- reset stats\n" +

" --version -- display version info\n" +

" --help | -h -- display this help and exit\n\n" +

"Options (one or more of the following):\n\n" +

"Loaders:\n\n" +

" -wav - assume WAVE files loading (default)\n" +

" -text - assume loading of text samples\n" +

"\n" +

"Preprocessing:\n\n" +

" -silence - remove silence (can be combined with any below)\n" +

" -noise - remove noise (can be combined with any below)\n" +

" -raw - no preprocessing\n" +

" -norm - use just normalization, no filtering\n" +

" -low - use low-pass FFT filter\n" +

" -high - use high-pass FFT filter\n" +

" -boost - use high-frequency-boost FFT preprocessor\n" +

" -band - use band-pass FFT filter\n" +

" -endp - use endpointing\n" +

" -lowcfe - use low-pass CFE filter\n" +

" -highcfe - use high-pass CFE filter\n" +

" -bandcfe - use band-pass CFE filter\n" +

" -bandstopcfe - use band-stop CFE filter\n" +

"\n" +

"Feature Extraction:\n\n" +

" -lpc - use LPC\n" +

" -fft - use FFT\n" +

" -minmax - use Min/Max Amplitudes\n" +

" -randfe - use random feature extraction\n" +

" -aggr - use aggregated FFT+LPC feature extraction\n" +

" -f0 - use F0 (pitch, or fundamental frequency; NOT IMPLEMENTED\n" +

" -segm - use Segmentation (NOT IMPLEMENTED)\n" +

" -cepstral - use Cepstral analysis (NOT IMPLEMENTED)\n" +

"\n" +

"Classification:\n\n" +

" -nn - use Neural Network\n" +

" -cheb - use Chebyshev Distance\n" +

" -eucl - use Euclidean Distance\n" +

" -mink - use Minkowski Distance\n" +

" -diff - use Diff-Distance\n" +

" -zipf - use Zipf’s Law-based classifier\n" +

" -randcl - use random classification\n" +

" -markov - use Hidden Markov Models (NOT IMPLEMENTED)\n" +

" -hamming - use Hamming Distance\n" +

" -cos - use Cosine Similarity Measure\n" +

"\n" +

"Misc:\n\n" +

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 184

" -debug - include verbose debug output\n" +

" -spectrogram - dump spectrogram image after feature extraction\n" +

" -graph - dump wave graph before preprocessing and after feature extraction\n" +

" <integer> - expected speaker ID\n" +

"\n"

);

System.exit(0);

}

/**

* Retrieves String representation of the application’s version.

* @return version String

*/

public static final String getVersion()

{

return MAJOR_VERSION + "." + MINOR_VERSION + "." + REVISION;

}

/**

* Retrieves integer representation of the application’s version.

* @return integer version

*/

public static final int getIntVersion()

{

return MAJOR_VERSION * 100 + MINOR_VERSION * 10 + REVISION;

}

/**

* Makes sure the applications isn’t run against older MARF version.

* Exits with 1 if the MARF version is too old.

*/

public static final void validateVersions()

{

if(MARF.getDoubleVersion() < (0 * 100 + 3 * 10 + 0 + .6))

{

System.err.println

(

"Your MARF version (" + MARF.getVersion() +

") is too old. This application requires 0.3.0.6 or above."

);

System.exit(1);

}

}

/**

* Composes the current configuration of in a string form.

*

* @param pstrArgv set of configuration options passed through the command line;

* can be null or empty. If latter is the case, MARF itself is queried for its

* numerical set up inside.

*

* @return the current configuration setup

*/

public static final String getConfigString(String[] pstrArgv)

{

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 185

// Store config and error/successes for that config

String strConfig = "";

if(pstrArgv != null && pstrArgv.length > 2)

{

// Get config from the command line

for(int i = 2; i < pstrArgv.length; i++)

{

strConfig += pstrArgv[i] + " ";

}

}

else

{

// Query MARF for it’s current config

strConfig = MARF.getConfig();

}

return strConfig;

}

/**

* Sets default MARF configuration parameters as normalization

* for preprocessing, FFT for feature extraction, Eucludean

* distance for training and classification with no spectrogram

* dumps and no debug information, assuming WAVE file format.

*

* @throws MARFException

* @since 0.3.0.5

*/

public static final void setDefaultConfig()

throws MARFException

{

/*

* Default MARF setup

*/

MARF.setPreprocessingMethod(MARF.DUMMY);

MARF.setFeatureExtractionMethod(MARF.FFT);

MARF.setClassificationMethod(MARF.EUCLIDEAN_DISTANCE);

MARF.setDumpSpectrogram(false);

MARF.setSampleFormat(MARF.WAV);

// MARF.setSampleFormat(MARF.TEXT);

Debug.enableDebug(false);

}

/**

* Customizes MARF’s configuration based on the options.

* @throws MARFException if some options are out of range

* @since 0.3.0.5

*/

public static final void setCustomConfig()

throws MARFException

{

ModuleParams oParams = new ModuleParams();

for

(

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 186

int iPreprocessingMethod = MARF.MIN_PREPROCESSING_METHOD;

iPreprocessingMethod <= MARF.MAX_PREPROCESSING_METHOD;

iPreprocessingMethod++

)

{

if(soGetOpt.isActiveOption(iPreprocessingMethod))

{

MARF.setPreprocessingMethod(iPreprocessingMethod);

switch(iPreprocessingMethod)

{

// Endpointing did not respond well to silence removal

// and the definition of RAW assumes none of that is done.

// Endpointing also has some extra params of its own.

case MARF.RAW:

case MARF.ENDPOINT:

case MARF.DUMMY:

case MARF.HIGH_FREQUENCY_BOOST_FFT_FILTER:

case MARF.HIGH_PASS_FFT_FILTER:

case MARF.LOW_PASS_FFT_FILTER:

case MARF.BANDPASS_FFT_FILTER:

case MARF.HIGH_PASS_BOOST_FILTER:

case MARF.BAND_PASS_CFE_FILTER:

case MARF.BAND_STOP_CFE_FILTER:

case MARF.LOW_PASS_CFE_FILTER:

case MARF.HIGH_PASS_CFE_FILTER:

{

// Normalization and filters seem to respond better

// to silence removal. Setting noise removal at this

// time has no effect. The setting of the third protocol parameter

// is yet to be implemented here.

oParams.addPreprocessingParam(new Boolean(soGetOpt.isActiveOption(OPT_NOISE_REMOVAL)));

oParams.addPreprocessingParam(new Boolean(soGetOpt.isActiveOption(OPT_SILENCE_REMOVAL)));

break;

}

default:

assert false : "Not implemented valid preprocessing configuration parameter: " + iPreprocessingMethod;

} // switch

break;

}

}

for

(

int iFeatureExtractionMethod = MARF.MIN_FEATUREEXTRACTION_METHOD;

iFeatureExtractionMethod <= MARF.MAX_FEATUREEXTRACTION_METHOD;

iFeatureExtractionMethod++

)

{

if(soGetOpt.isActiveOption(iFeatureExtractionMethod))

{

MARF.setFeatureExtractionMethod(iFeatureExtractionMethod);

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 187

switch(iFeatureExtractionMethod)

{

case MARF.FFT:

case MARF.LPC:

case MARF.RANDOM_FEATURE_EXTRACTION:

case MARF.MIN_MAX_AMPLITUDES:

case MARF.F0:

case MARF.CEPSTRAL:

case MARF.SEGMENTATION:

// For now do nothing; customize when these methods

// become parametrizable.

break;

case MARF.FEATURE_EXTRACTION_AGGREGATOR:

{

// For now aggregate FFT followed by LPC until

// it becomes customizable

oParams.addFeatureExtractionParam(new Integer(MARF.FFT));

oParams.addFeatureExtractionParam(null);

oParams.addFeatureExtractionParam(new Integer(MARF.LPC));

oParams.addFeatureExtractionParam(null);

break;

}

default:

assert false;

} // switch

break;

}

}

for

(

int iClassificationMethod = MARF.MIN_CLASSIFICATION_METHOD;

iClassificationMethod <= MARF.MAX_CLASSIFICATION_METHOD;

iClassificationMethod++

)

{

if(soGetOpt.isActiveOption(iClassificationMethod))

{

MARF.setClassificationMethod(iClassificationMethod);

switch(iClassificationMethod)

{

case MARF.NEURAL_NETWORK:

{

// Dump/Restore Format of the TrainingSet

oParams.addClassificationParam(new Integer(TrainingSet.DUMP_GZIP_BINARY));

// Training Constant

oParams.addClassificationParam(new Double(0.5));

// Epoch number

oParams.addClassificationParam(new Integer(20));

// Min. error

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 188

oParams.addClassificationParam(new Double(0.1));

break;

}

case MARF.HAMMING_DISTANCE:

{

// Dump/Restore Format

oParams.addClassificationParam(new Integer(TrainingSet.DUMP_GZIP_BINARY));

// Type of hamming comparison

oParams.addClassificationParam(new Integer(HammingDistance.STRICT_DOUBLE));

break;

}

case MARF.MINKOWSKI_DISTANCE:

{

// Dump/Restore Format

oParams.addClassificationParam(new Integer(TrainingSet.DUMP_GZIP_BINARY));

// Minkowski Factor

oParams.addClassificationParam(new Double(6.0));

break;

}

case MARF.EUCLIDEAN_DISTANCE:

case MARF.CHEBYSHEV_DISTANCE:

case MARF.MAHALANOBIS_DISTANCE:

case MARF.RANDOM_CLASSIFICATION:

case MARF.DIFF_DISTANCE:

case MARF.MARKOV:

case MARF.ZIPFS_LAW:

case MARF.COSINE_SIMILARITY_MEASURE:

// For now do nothing; customize when these methods

// become parametrizable.

break;

default:

assert false : "Unrecognized classification module";

} // switch

// Method is found, break out of the look up loop

break;

}

}

// Assign meaningful params only

if(oParams.size() > 0)

{

MARF.setModuleParams(oParams);

}

}

}

// EOF

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 189

D.2 SpeakersIdentDb.java

import java.awt.Point;

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.FileOutputStream;

import java.io.FileReader;

import java.io.IOException;

import java.io.ObjectInputStream;

import java.io.ObjectOutputStream;

import java.text.DecimalFormat;

import java.util.Enumeration;

import java.util.Hashtable;

import java.util.StringTokenizer;

import java.util.Vector;

import java.util.zip.GZIPInputStream;

import java.util.zip.GZIPOutputStream;

import marf.Storage.Database;

import marf.Storage.StorageException;

import marf.util.Arrays;

import marf.util.Debug;

/**

* <p>Class SpeakersIdentDb manages database of speakers on the application level.</p>

* <p>XXX: Move stats collection over to MARF.</p>

*

* $Id: SpeakersIdentDb.java,v 1.25 2007/02/19 03:28:13 mokhov Exp $

*

* @author Serguei Mokhov

* @version $Revision: 1.25 $

* @since 0.0.1

*/

public class SpeakersIdentDb

extends Database

{

/**

* Hashes "config string" -> Vector(FirstMatchPoint(XSuccesses, YFailures),

* SecondMatchPoint(XSuccesses, YFailures)).

*/

private Hashtable oStatsPerConfig = null;

/**

* Array of sorted stats refs.

*/

private transient Vector[] aoSortedStatsRefs = null;

/**

* A vector of vectors of speakers info pre-loded on <code>connect()</code>.

* @see #connect()

*/

private Hashtable oDB = null;

/**

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 190

* "Database connection".

*/

private BufferedReader oConnection = null;

/**

* For serialization versioning.

* @since 0.3.0.5

*/

private static final long serialVersionUID = -7185805363856188810L;

/**

* Constructor.

* @param pstrFileName filename of a CSV file with IDs and names of speakers

*/

public SpeakersIdentDb(final String pstrFileName)

{

this.strFilename = pstrFileName;

this.oDB = new Hashtable();

this.oStatsPerConfig = new Hashtable();

}

/**

* Retrieves Speaker’s ID by a sample filename.

* @param pstrFileName Name of a .wav file for which ID must be returned

* @param pbTraining indicates whether the filename is a training (<code>true</code>) sample or testing (<code>false</code>)

* @return int ID

* @throws StorageException in case of an error in any I/O operation

*/

public final int getIDByFilename(final String pstrFileName, final boolean pbTraining)

throws StorageException

{

String strFilenameToLookup;

// Extract actual file name without preceeding path (if any)

if(pstrFileName.lastIndexOf(’/’) >= 0)

{

strFilenameToLookup = pstrFileName.substring(pstrFileName.lastIndexOf(’/’) + 1, pstrFileName.length());

}

else if(pstrFileName.lastIndexOf(’\\’) >= 0)

{

strFilenameToLookup = pstrFileName.substring(pstrFileName.lastIndexOf(’\\’) + 1, pstrFileName.length());

}

else

{

strFilenameToLookup = pstrFileName;

}

Enumeration oIDs = this.oDB.keys();

// Traverse all the info vectors looking for sample filename

while(oIDs.hasMoreElements())

{

Integer oID = (Integer)oIDs.nextElement();

Debug.debug("File: " + pstrFileName + ", id = " + oID.intValue());

Vector oSpeakerInfo = (Vector)this.oDB.get(oID);

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 191

Vector oFilenames;

if(pbTraining == true)

{

oFilenames = (Vector)oSpeakerInfo.elementAt(1);

}

else

{

oFilenames = (Vector)oSpeakerInfo.elementAt(2);

}

// Start from 1 because 0 is speaker’s name

for(int i = 0; i < oFilenames.size(); i++)

{

String strCurrentFilename = (String)oFilenames.elementAt(i);

if(strCurrentFilename.equals(strFilenameToLookup))

{

return oID.intValue();

}

}

}

return -1;

}

/**

* Retrieves speaker’s name by their ID.

* @param piID ID of a person in the DB to return a name for

* @return name string

* @throws StorageException

*/

public final String getName(final int piID)

throws StorageException

{

//Debug.debug("getName() - ID = " + piID + ", db size: " + oDB.size());

String strName;

Vector oDBEntry = (Vector)this.oDB.get(new Integer(piID));

if(oDBEntry == null)

{

strName = "Unknown Speaker (" + piID + ")";

}

else

{

strName = (String)oDBEntry.elementAt(0);

}

return strName;

}

/**

* Connects to the "database" of speakers (opens the text file :-)).

* @throws StorageException in case of any I/O error

*/

public void connect()

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 192

throws StorageException

{

// That’s where we should establish file linkage and keep it until closed

try

{

this.oConnection = new BufferedReader(new FileReader(this.strFilename));

this.bConnected = true;

}

catch(IOException e)

{

throw new StorageException

(

"Error opening speaker DB: \"" + this.strFilename + "\": " +

e.getMessage() + "."

);

}

}

/**

* Retrieves speaker’s data from the text file and populates

* internal data structures. Uses StringTokenizer to parse

* data read from the file.

* @throws StorageException in case of any I/O error

*/

public void query()

throws StorageException

{

// That’s where we should load db results into internal data structure

String strLine;

int iID = -1;

try

{

strLine = this.oConnection.readLine();

while(strLine != null)

{

StringTokenizer oTokenizer = new StringTokenizer(strLine, ",");

Vector oSpeakerInfo = new Vector();

// get ID

if(oTokenizer.hasMoreTokens())

{

iID = Integer.parseInt(oTokenizer.nextToken());

}

// speaker’s name

if(oTokenizer.hasMoreTokens())

{

strLine = oTokenizer.nextToken();

oSpeakerInfo.add(strLine);

}

// training file names

Vector oTrainingFilenames = new Vector();

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 193

if(oTokenizer.hasMoreTokens())

{

StringTokenizer oSTK = new StringTokenizer(oTokenizer.nextToken(), "|");

while(oSTK.hasMoreTokens())

{

strLine = oSTK.nextToken();

oTrainingFilenames.add(strLine);

}

}

oSpeakerInfo.add(oTrainingFilenames);

// testing file names

Vector oTestingFilenames = new Vector();

if(oTokenizer.hasMoreTokens())

{

StringTokenizer oSTK = new StringTokenizer(oTokenizer.nextToken(), "|");

while(oSTK.hasMoreTokens())

{

strLine = oSTK.nextToken();

oTestingFilenames.add(strLine);

}

}

oSpeakerInfo.add(oTestingFilenames);

Debug.debug("Putting ID=" + iID + " along with info vector of size " + oSpeakerInfo.size());

this.oDB.put(new Integer(iID), oSpeakerInfo);

strLine = this.oConnection.readLine();

}

}

catch(IOException e)

{

throw new StorageException

(

"Error reading from speaker DB: \"" + this.strFilename +

"\": " + e.getMessage() + "."

);

}

}

/**

* Closes (file) database connection.

* @throws StorageException if not connected or fails to close inner reader

*/

public void close()

throws StorageException

{

// Close file

if(this.bConnected == false)

{

throw new StorageException("SpeakersIdentDb.close() - not connected");

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 194

}

try

{

this.oConnection.close();

this.bConnected = false;

}

catch(IOException e)

{

throw new StorageException(e.getMessage());

}

}

/**

* Adds one more classification statics entry.

* @param pstrConfig String representation of the configuration the stats are for

* @param pbSuccess <code>true</code> if classification was successful; <code>false</code> otherwise

*/

public final void addStats(final String pstrConfig, final boolean pbSuccess)

{

addStats(pstrConfig, pbSuccess, false);

}

/**

* Adds one more classification statics entry and accounts for the second best choice.

* @param pstrConfig String representation of the configuration the stats are for

* @param pbSuccess <code>true</code> if classification was successful; <code>false</code> otherwise

* @param pbSecondBest <code>true</code> if classification was successful; <code>false</code> otherwise

*/

public final void addStats(final String pstrConfig, final boolean pbSuccess, final boolean pbSecondBest)

{

Vector oMatches = (Vector)this.oStatsPerConfig.get(pstrConfig);

Point oPoint = null;

if(oMatches == null)

{

oMatches = new Vector(2);

oMatches.add(new Point());

oMatches.add(new Point());

oMatches.add(pstrConfig);

}

else

{

if(pbSecondBest == false)

{

// First match

oPoint = (Point)oMatches.elementAt(0);

}

else

{

// Second best match

oPoint = (Point)oMatches.elementAt(1);

}

}

int iSuccesses = 0; // # of successes

int iFailures = 0; // # of failures

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 195

if(oPoint == null) // Didn’t exist yet; create new

{

if(pbSuccess == true)

{

iSuccesses = 1;

}

else

{

iFailures = 1;

}

oPoint = new Point(iSuccesses, iFailures);

if(oPoint == null)

{

System.err.println("SpeakersIdentDb.addStats() - oPoint is null! Out of memory?");

System.exit(-1);

}

if(oMatches == null)

{

System.err.println("SpeakersIdentDb.addStats() - oMatches is null! Out of memory?");

System.exit(-1);

}

if(oMatches.size() == 0)

{

System.err.println("SpeakersIdentDb.addStats() - oMatches.size = 0");

System.exit(-1);

}

if(pbSecondBest == false)

{

oMatches.setElementAt(oPoint, 0);

}

else

{

oMatches.setElementAt(oPoint, 1);

}

this.oStatsPerConfig.put(pstrConfig, oMatches);

}

else // There is an entry for this config; update

{

if(pbSuccess == true)

{

oPoint.x++;

}

else

{

oPoint.y++;

}

}

}

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 196

/**

* Dumps all collected statistics to STDOUT.

* @throws Exception

*/

public final void printStats()

throws Exception

{

printStats(false);

}

/**

* Dumps collected statistics to STDOUT.

* @param pbBestOnly <code>true</code> - print out only the best score number; <code>false</code> - all stats

* @throws Exception

*/

public final void printStats(boolean pbBestOnly)

throws Exception

{

if(this.oStatsPerConfig.size() == 0)

{

System.err.println("SpeakerIdentDb: no statistics available. Did you run the recognizer yet?");

return;

}

// First row is for the identified results, 2nd is for 2nd best ones.

String[][] astrResults = new String[2][this.oStatsPerConfig.size()];

this.aoSortedStatsRefs = (Vector[])oStatsPerConfig.values().toArray(new Vector[0]);

Arrays.sort(this.aoSortedStatsRefs, new StatsPercentComparator(StatsPercentComparator.DESCENDING));

int iResultNum = 0;

System.out.println("guess,run,config,good,bad,%");

for(int i = 0; i < this.aoSortedStatsRefs.length; i++)

{

String strConfig = (String)(this.aoSortedStatsRefs[i]).elementAt(2);

for(int j = 0; j < 2; j++)

{

Point oGoodBadPoint = (Point)(this.aoSortedStatsRefs[i]).elementAt(j);

String strGuess = (j == 0) ? "1st" : "2nd";

String strRun = (iResultNum + 1) + "";

DecimalFormat oFormat = new DecimalFormat("#,##0.00;(#,##0.00)");

double dRate = ((double)oGoodBadPoint.x / (double)(oGoodBadPoint.x + oGoodBadPoint.y)) * 100;

if(pbBestOnly == true)

{

System.out.print(oFormat.format(dRate));

return;

}

astrResults[j][iResultNum] =

strGuess + "," +

strRun + "," +

strConfig + "," +

oGoodBadPoint.x + "," + // Good

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 197

oGoodBadPoint.y + "," + // Bad

oFormat.format(dRate);

}

iResultNum++;

}

// Print all of the 1st match

for(int i = 0; i < astrResults[0].length; i++)

{

System.out.println(astrResults[0][i]);

}

// Print all of the 2nd match

for(int i = 0; i < astrResults[1].length; i++)

{

System.out.println(astrResults[1][i]);

}

}

/**

* Resets in-memory and on-disk statistics.

* @throws StorageException

*/

public final void resetStats()

throws StorageException

{

this.oStatsPerConfig.clear();

dump();

}

/**

* Dumps statistic’s Hashtable object as gzipped binary to disk.

* @throws StorageException

*/

public void dump()

throws StorageException

{

try

{

FileOutputStream oFOS = new FileOutputStream(this.strFilename + ".stats");

GZIPOutputStream oGZOS = new GZIPOutputStream(oFOS);

ObjectOutputStream oOOS = new ObjectOutputStream(oGZOS);

oOOS.writeObject(this.oStatsPerConfig);

oOOS.flush();

oOOS.close();

}

catch(Exception e)

{

throw new StorageException(e);

}

}

/**

* Reloads statistic’s Hashtable object from disk.

* If the file did not exist, it creates a new one.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 198

* @throws StorageException

*/

public void restore()

throws StorageException

{

try

{

FileInputStream oFIS = new FileInputStream(this.strFilename + ".stats");

GZIPInputStream oGZIS = new GZIPInputStream(oFIS);

ObjectInputStream oOIS = new ObjectInputStream(oGZIS);

this.oStatsPerConfig = (Hashtable)oOIS.readObject();

oOIS.close();

}

catch(FileNotFoundException e)

{

System.out.println

(

"NOTICE: File " + this.strFilename +

".stats does not seem to exist. Creating a new one...."

);

resetStats();

}

catch(ClassNotFoundException e)

{

throw new StorageException

(

"SpeakerIdentDb.retore() - ClassNotFoundException: " +

e.getMessage()

);

}

catch(Exception e)

{

throw new StorageException(e);

}

}

}

/**

* <p>Used in sorting by percentage of the stats entries

* in either ascending or descending order.</p>

*

* <p>TODO: To be moved to Stats.</p>

*

* @author Serguei Mokhov

* @version $Revision: 1.25 $

* @since 0.0.1 of MARF

*/

class StatsPercentComparator

extends marf.util.SortComparator

{

/**

* For serialization versioning.

* @since 0.3.0.5

*/

private static final long serialVersionUID = -7185805363856188810L;

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 199

/**

* Mimics parent’s constructor.

*/

public StatsPercentComparator()

{

super();

}

/**

* Mimics parent’s constructor.

* @param piSortMode either DESCENDING or ASCENDING sort mode

*/

public StatsPercentComparator(final int piSortMode)

{

super(piSortMode);

}

/**

* Implementation of the Comparator interface for the stats objects.

* @see java.util.Comparator#compare(java.lang.Object, java.lang.Object)

*/

public int compare(Object poStats1, Object poStats2)

{

Vector oStats1 = (Vector)poStats1;

Vector oStats2 = (Vector)poStats2;

Point oGoodBadPoint1 = (Point)(oStats1.elementAt(0));

Point oGoodBadPoint2 = (Point)(oStats2.elementAt(0));

double dRate1 = ((double)oGoodBadPoint1.x / (double)(oGoodBadPoint1.x + oGoodBadPoint1.y)) * 100;

double dRate2 = ((double)oGoodBadPoint2.x / (double)(oGoodBadPoint2.x + oGoodBadPoint2.y)) * 100;

switch(this.iSortMode)

{

case DESCENDING:

{

return (int)((dRate2 - dRate1) * 100);

}

case ASCENDING:

default:

{

return (int)((dRate1 - dRate2) * 100);

}

}

}

}

// EOF

Appendix E

TODO

MARF TODO/Wishlist

$Header: /cvsroot/marf/marf/TODO,v 1.75 2007/08/05 18:36:40 mokhov Exp $

Legend:

"-" -- TODO

"*" -- done (for historical records)

"+-" -- somewhat done ("+" is degree of completed work, "-" remaining).

"?" -- unsure if feature is needed or how to proceed about it or it’s potentially far away

{..} -- projected release (tentative)

THE APPS

- SpeakerIdentApp

- GUI

- Real-Time recording and recognition (does it belong here?)

- Integrate fully marf.Storage.SampleRecorder of Jimmy

- Move dir. read from the app to MARF in training section {0.3.0}

- Enhance batch recognition (do not re-load training set per sample) {0.3.0}

- Enhance Option Processing

* Make use of OptionProcessor {0.3.0.5}

- Enhance options with arguments, e.g. -fft=1024, -lpc=40, -lpc=40,256, keeping the existing defaults

- Add options:

* --batch-ident option {0.3.0.5}

- -data-dir=DIRNAME other than default to specify a dir where to store training sets and stuff

- -mink=r

- -fft=x,y

- -lpc=x,y

* single file training option {0.3.0.5}

- Dump stats: -classic -latex -csv

+- Make binary/optimized distro

- Generate data.tex off speakers.txt in the manual.

+---- Convert testing.sh to Java

- Open up -randcl with -nn

* Finish testing.bat

* Make executable .jar
200

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 201

* Improve on javadoc

* ChangeLog

* Sort the stats

* Add classification methods to training in testing.sh

* Implement batch plan execution

- LangIdentApp

* Integrate

- Add GUI

* Make executable .jar

- Release.

- ProbabilisticParsingApp

* Integrate

- Add GUI

* Make executable .jar

- Release.

- ZipfLawApp

* Integrate

- Add GUI

* Make executable .jar

- Release.

- TestFilters

- The application has already a Makefile and a JBuilder project file.

We would want to add a NetBeans project as well.

- Add GUI

* Release.

* It only tests HighFrequencyBoost, but we also have BandpassFilter,

HighPassFilter, and LowPassFilter.

These have to be tested.

* The output of every filter will have to be stored in a expected

(needs to be created) folder for future regression testing. Like

with TestMath.

* Option processing has to be done and standartized

by using marf.util.OptionProcessor uniformly in all apps. But we can

begin with this one. The options then would be: --high, --low, --band,

and --boost that will correspond to the appropriate filters I mentioned.

* The exception handling has to be augmented to print the error message

and the stack trace to System.err.

* Apply coding conventions to naming variables, etc.

* Make executable .jar

- TestNN

* Fix to work with new MARF API

* Add use of OptionProcessor

* Apply coding conventions

- Add GUI

* Make executable .jar

- Release.

- TestLPC

- Add GUI

* Release.

* Fix to work with new MARF API

* Add use of OptionProcessor

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 202

* Apply coding conventions

* Make executable .jar

- TestFFT

- Add GUI

* Release.

* Make executable .jar

* Fix to work with new MARF API

* Add use of OptionProcessor

* Apply coding conventions

- MathTestApp

- Add GUI

* Release.

* Make executable .jar

- TestWaveLoader

- Add GUI

* Release.

* Fix to work with new MARF API

* Apply coding conventions

* Make executable .jar

- TestLoaders

- Add GUI

* Create a-la TestFilters with option processing.

* Make executable .jar

* Release.

- Regression

- one script calls all the apps and compares new results vs. expected

- Matrix ops

+- Fix TestNN

- Add GUI

* Make executable .jar

- Release.

- Graph % vs. # of samples used per method

- Release all apps as packages at Source Forge

++- Bundle

++- Individually

- SpeechRecognition

- Define

- InstrumentIdentification

- Define

- EmotionDetection

- Define

- User Authentication

THE BUILD SYSTEM

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 203

- Perhaps at some point we’d need make/project files for other Java IDEs, such as

- IBM Visual Age

- Ant

- Windoze .bat file(s)?

* Sun NetBeans

* A Makefile per directory

* Make utility detection test

* global makefile in /marf

* fix doc’s global makefile

* Global Makefile for apps

(will descend to each dir and build all the apps.)

* Build and package distrubution

* MARF

* App

DISTROS

* Apps jars

- Different JDKs (1.4/1.5/1.6)

- rpm

- FCs

- Mandrake

- RH

- deb

- dmg

- iso

THE FRAMEWORK

- All/Optimization/Testing

- Implement text file support/toString() method for

all the modules for regression testing

- Threading and Parallelism

- PR and FE are safe to run in ||

- Fix NNet for ArrayLists->Vector

++--- Adopt JUnit

+- Use of StringBuffer for String concatenation

* Implement getMARFSourceCodeRevision() method for CVS revision info.

+- Distributed MARF

- WAL

- Replication

- Preprocessing

++- Make dump()/restore() to serialize filtered output {0.3.0}

- Fix hardcoding of filter boundaries

- Implement

- Enable changing values of frequency boundaries and coeffs. in filters by an app.

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 204

- "Compressor" [steve]

- Methods: {0.3.0.6}

- removeNoise()

* removeSilence()

- cropAudio()

- streamed normalization

* Endpoint {0.3.0.5}

* High-pass filter with high-frequency boost together {0.3.0}

* Band-pass Filter {0.2.0}

* Move BandpassFilter and HighFrequencyBoost under FFTFilter package with CVS comments

* Tweak the filter values of HighPass and HighFrequencyBoost filters

- Feature Extraction

- Make modules to dump their features for future use by NNet and maybe others {0.3.0}

- Implement {1.0.0}

- F0

- fundamental frequency estimation,

providing us with a few more features.

- Cepstral Analysis

- Segmentation

* RandomFeatureExtraction {0.2.0}

- Enhance

- MinMaxAmplitudes to pick different features, not very close to each other

- Classification

- Implement

+++-- Mahalanobis Distance {0.3.0}

- Learning Covariance Matrix

- Stochastic [serge] {1.0.0}

- Gaussian Mixture Models

- Hidden Markov Models {1.0.0}

- SimilarityClassifier {0.3.0}

? Boolean Model

? Vector Space Model

? sine similarity model

* Minkowski’s Distance {0.2.0}

* RandomClassification {0.2.0}

- Fully Integrate

+- MaxProbabilityClassifier

- Push StatisticalEstimator to Stochastic

+- ZipfLaw

- Fix and document NNet {0.*.*}

- add % of correct/incorrect expected to train() {0.3.0}

- ArrayList ---> Vector, because ArrayList is NOT thread-safe {0.3.0}

- Second Best (by doubling # of output Neurons with the 2nd half being the 2nd ID)

+- Epoch training

* dump()/retore() {0.2.0}

- Distance Classifiers

- make distance() throw an exception maybe?

* Move under Distance package

* DiffDistance

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 205

- Sample Loaders

- Create Loaders for Java-supported formats:

+--- AIFC

+--- AIFF

+--- AU

+--- SND

+--- Add MIDI support

* Create MARFAudioFileFormat extends AudioFileFormat

* Enumerate all types in addition to ours from FileAudioFormat.Types

- marf.speech package

- Recognition (stt)

- Dictionaries

- Generation (tts)

- NLP package

++++- Integrate

+- Classification

- Potter’s Stemmer

* Stats

* Storage management

* StatisticalEstimators

* NLP.java

* Parsing

* Util

* Collocations

? Integrate AIMA stuff

- Stats {0.3.0}

- Move stats collection from the app and other places to StatsCollector

- Timing

- Batch progress report

- Rank results

- Results validation (that numbers add up properly e.g. sum of BAD and GOOD should be equal to total)

- Algos

+- Algorithm decoupling to marf.algos or marf.algorithms or ... {0.4.0}

* To marf.math.Algorithms {0.3.0}

- marf.algos.Search

- marf.util.DataStructures -- Node / Graph --- to be used by the networks and state machines

* move out hamming() from FeatureExtraction

* marf.math

* Integrate Vector operations

* Matrix:

* Add {0.3.0.3}

* translate

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 206

* rotate

* scale

* shear

- GUI {0.5.0}

- Make them actual GUI components to be included into App

- Spectrogram

+----- Implement SpectrogramPanel

- Draw spectrogram on the panel

* Fix filename stuff (module_dirname to module_filename)

- WaveGrapher

+----- Implement WaveGrapherPanel

- Draw waves on the panel

- Fix WaveGrapher

- Sometimes dumps files of 0 length

- Make it actually ouput PPM or smth like that (configurable?)

- Too huge files for samp output.

- Have LPC understand it

- Config tool

- Web interface?

- MARF.java

+- Concurrent use of modules of the same type

- FFT and F0 can both be applied like normalization and filtering

- Implement

- streamedRecognition()

+- train()

- Add single file training

- Inter-module compatibility (i.e. specific modules can only work

with some other specific modules and not the others)

- Module Compatibility Matrix

- Module integer and String IDs

++++- Server Part {2.0.0}

* enhance error reporting

* Embed the NLP class

* MARF Exceptions Framework {0.3.0}

* Propagate to NLP properly

* NLPException

* StorageException

* Have all marf exceptions inherit from util.MARFException

- marf.util

- complete and document

+++- Matrix

+++- FreeVector

* Arrays

* Debug

? PrintFactory

- Move NeuralNetowork.indent()

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 207

? marf.util.upgrade

* OptionProcessor

* Integrate {0.3.0.2}

* Add parsing of "name=value" options {0.3.0.3}

* Add marf.util.Debug module. {0.3.0.2}

* marf.util.Debug.debug()

* Replicate MARF.debug() --> marf.util.Debug.debug()

- Storage

- ModuleParams:

- have Hashtables instead of Vectors

to allow params in any order and in any number.

- maybe use OptionProcessor or be its extension?

- Keep all data files under marf.data dir, like training sets, XML, etc {0.3.0}

- Implement

- Schema (as in DB for exports)

- Common attribute names for

- SQL

- XML

- HTML

- CSV

- Metadata / DDL

- Dump/Restore Types

+++- DUMP_BINARY (w/o compression) {0.3.0}

- DUMP_XML {?.?.?}

- DUMP_CSV {?.?.?}

- DUMP_HTML {?.?.?}

- DUMP_SQL {?.?.?}

+- Revise TrainingSet stuff

? Cluster mode vs. feature set mode

- TrainingSet

- upgradability {?.?.?}

- convertability: gzbin <-> bin <-> csv <-> xml <-> html <-> sql

+--- Add FeatureSet {0.3.0}

- Revise dump/restore implementation to check for unnecessary

file writes

* Integrate IStorageManager

* Move DUMP_* flags up to IStorageManager

* Add re-implemented StorageManager and integrate it

- The MARF Language (MARFL)

- A meta language to write MARF applications in a script/shell-like

manner along the lines of:

MARF:

{

use normalization;

use FFT 1024;

use NeuralNetwork;

use WAVLoader 8000 1 mono;

pipeline start on dir /var/data/samples;

print stats paged 10;

}

- Fully define syntax

- Complete compiler

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 208

- grammar file

- semantic analysis

- code generator

* Clean up

* CVS:

? Rename /marf/doc/sgml to /marf/doc/styles

x Remove /marf/doc/styles/ref

* Remove --x permissions introduced from windoze in files:

* /marf/doc/src/tex/sampleloading.tex

* /marf/doc/src/graphics/*.png

* /marf/doc/src/graphics/arch/*.png

* /marf/doc/src/graphics/fft_spectrograms/*.ppm

* /marf/doc/src/graphics/lpc_spectrograms/*.ppm

* /marf/doc/arch.mdl

* /marf/src/marf/Classification/Distance/EuclideanDistance.java

* /marf/src/marf/Preprocessing/FFTFilter.java

* /apps/SpeakerIdentApp/SpeakerIdentApp.jpx

* /apps/SpeakerIdentApp/testing-samples/*.wav

* /apps/SpeakerIdentApp/testing-samples/*.wav

* /apps/TestFilters/TestFilters.*

* Add NLP revisions directly to the CVS (by SF staff)

* Parsing

* Stemming

* Collocations

* Move distance classifiers with CVS log

to Distance

* remove uneeded attics and corresponding dirs

* "Ceptral"

* Bogus samples

THE CODE

* Define coding standards

+++- Propagate them throughout the code

* Document

THE SAMPLE DATABASES

- /samples/ -- Move all wav and corpora files there from apps

- WAV/

- training-samples/

- testing-samples/

- README

- speakers.txt

- <training-sets>

- corpora/

- training/

- en/

- fr/

- ru/

- ...

- testing/

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 209

- en/

- fr/

- ru/

- ...

- heldout/

- README

- <training-sets>

- Make releases

THE TOOLS

* Add module

- Add tools:

- marfindent

* stats2latex

* cvs2cl

* cvs2html

- upgrade/

- MARFUpgrade.java

- an app or a marf module?

- cmd-line?

- GUI?

- Interactive?

- v012/TrainingSet.java

- v020/TrainingSet.java

FeatureSet.java

THE DOCS

- docs [s]

- report.pdf -> manual.pdf

- autosync from the report

- history.tex -> HISTORY

- legal.tex -> COPYRIGHT

- installation.tex -> INSTALL

- Arch Update [serge]

+- gfx model (rr)

- add util package

- add math package

- add nlp package

* gui: add StorageManager

* update doc

* newer images

- MARF-specific exceptions

- Account for dangling .tex files

- old-results.tex

- output.tex

* installation.tex

* training.tex

* sample-formats.tex

* cvs.tex

* history.tex

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 210

* f0.tex

* notation.tex

* sources.tex

+++- better doc format and formulas

- Results:

- Add modules params used, like r=6 in Minkowski, FFT input 1024, etc

- Add time took

* fix javadoc 1.4/1.5 warnings

* fix Appendix

* split-out bibliography

* index

* ChangeLog

* report components [serge]

- web site

- Publish

* TODO

+- ChanageLog

* Raw

- HTML

- Manual

- Add HTML

* Add training sets

* CVS

* autoupdate from CVS

EOF

Index

Algorithm
Artificial Neural Network, 51
Neural Network, 51

API
AddDelta, 97
AddOne, 97
Arrays, 159
BANDPASS FFT FILTER, 151
BandpassFilter, 150
BaseThread, 159
ByteUtils, 159
Classification, 26, 157, 158
Debug, 159
doFFT(), 57
doLPC(), 57
Dummy, 151, 153
Endpoint, 36
ExpandedThreadGroup, 159
F0, 64
FeatureExtraction, 46, 157
FeatureExtraction.FFT.FFT, 153
FeatureExtractionAggregator, 46
FFT, 26
GoodTuring, 97
Grammar, 125, 126
Hashtable, 86
HIGH FREQUENCY BOOST FFT FILTER, 151
HIGH PASS FFT FILTER, 151
HighFrequencyBoost, 150
HighPassFilter, 150
IClassification, 157
IFeatureExtraction, 157
IPreprocessing, 157
ISampleLoader, 157

LangIdentApp, 132
Logger, 159
LOW PASS FFT FILTER, 151
LowPassFilter, 150
LPC, 26, 64
MahalanobisDistance, 156
MARF, 15, 23, 39, 46, 151, 153, 157
marf-debug.jar, 8
marf.Classification.Distance.DiffDistance, 51
marf.Classification.Distance.Distance, 50, 51
marf.Classification.Distance.MahalanobisDistance,

50
marf.Classification.NeuralNetwork, 158
marf.FeatureExtraction.FeatureExtractionAggregator,

46
marf.FeatureExtraction.FFT, 152
marf.gui, 57
marf.jar, 8
marf.junit, 14
marf.MARF, 33, 50, 51, 150, 153
marf.MARF.MAJOR VERSION, 8
marf.MARF.MINOR REVISION, 8
marf.MARF.MINOR VERSION, 8
marf.MARF.REVISION, 8
marf.math, 11, 156
marf.math.Algortithms.Hamming, 41
marf.nlp, 107, 138
marf.Preprocessing.Dummy, 153
marf.Preprocessing.Dummy.Dummy, 33
marf.Preprocessing.Dummy.Raw, 33
marf.Preprocessing.Endpoint, 36
marf.Preprocessing.FFTFilter.*, 150
marf.Preprocessing.FFTFilter.HighFrequencyBoost,

39
211

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 212

marf.Preprocessing.FFTFilter.HighPassFilter, 37
marf.Preprocessing.Preprocessing, 150
marf.Stats, 11
marf.Storage, 11, 154, 156
marf.Storage.Loaders, 154, 156
marf.Storage.Sample, 150, 153
marf.Storage.SampleLoader, 150, 153
marf.Storage.WAVLoader, 150, 153
marf.util, 11, 156
marf.util.Arrays, 5, 158
marf.util.Debug, 158
marf.util.OptionProcessor, 150, 151, 153, 158
marf.Version, 8
marf.Version.MAJOR VERSION, 8
marf.Version.MINOR REVISION, 8
marf.Version.MINOR VERSION, 8
marf.Version.REVISION, 8
MathTestApp, 156
Matrix, 156
MLE, 97
ModuleParams, 23, 36, 46
NeuralNetwork, 26
normalize(), 151, 153
OptionProcessor, 151, 153, 156, 159, 160
oSortedStatRefs, 86
oStats, 86
parse(), 147
preprocess(), 151, 153
Preprocessing, 151, 153, 157
Preprocessing.removeSilence(), 35
ProbabilisticParsingApp, 125
Raw, 35
recognize(), 15
Regression, 14
removeNoise(), 151, 153
removeSilence(), 35, 151, 153
Sample, 151, 153, 154, 156
SampleLoader, 151, 153, 154, 156, 157
Serializable, 14
SINE, 151, 153

SineLoader, 149, 151–156
Sineloader, 152
SpeakerIdentApp, 3, 11, 33, 50, 51, 60, 66, 86,

166
SpeakersIdentDb, 166
Spectrogram, 5, 57, 162
Stochastic, 26
Storage, 6, 24
StorageManager, 159
test, 33, 50, 51
TestFFT, 152, 153
TestFilters, 5, 149, 151
TestLoaders, 154–156
TestLPC, 151
TestNN, 158
TestPlugin, 157
TestWaveLoader, 153, 154
train(), 15
Vector, 156
Version, 8
WAV, 151, 153
WaveGrapher, 5, 59
WAVLoader, 23, 149, 151–154, 156, 157
WittenBell, 97
WordStats, 86
ZipfLaw, 87

Applications, 86
CYK Probabilistic Parsing, 125
ENCSAssets, 159
ENCSAssetsCron, 160
ENCSAssetsDesktop, 159
GIPSY, 159
Language Identification, 93
MathTestApp, 156
SpeakerIdentApp, 86
TestFFT, 152
TestFilters, 149
TestLoaders, 154
TestLPC, 151
TestNN, 158

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 213

TestPlugin, 157
TestWaveLoader, 153
Zipf’s Law, 86

Artificial Neural Network, 51

C, 97, 102, 104, 126
C++, 97, 102, 104, 109, 126
Classification, 48

Diff Distance, 50
Mahalanobis Distance, 50

CLASSPATH, 13
Coding and Naming Conventions, 7
Collocations, 56
CYK Probabilistic Parsing, 125

Application, 125

Distance
Diff, 50
Mahalanobis, 50

Endpointing, 36
Experiments, 60
EXTDIRS, 13
External Applications

ENCSAssets, 159
ENCSAssetsCron, 160
ENCSAssetsDesktop, 159
GIPSY, 159

F0, 45
Feature Extraction, 41

F0, 45
Feature Extraction Aggragation, 46
Min/Max Amplitudes, 46

Feature Extraction Aggragation, 46
Files

<corpus-name>[<options¿].log, 87
*.class, 88
*.csv, 89
*.gzbin, 106
*.log, 88, 89
*.txt, 87

../../api, 12

../../api-dev, 12

.c, 98

.class, 13

.classpath, 12

.cpp, 98

.csv, 88

.jar, 10–14

.project, 12

.war, 13

.zip, 13
/usr/lib/marf, 12
/̃.emacs, 6
/̃.vimrc, 7
ar.txt, 98
bg.txt, 98
build.xml, 12
ChangeLog, 14
cpp.txt, 98
data/asmt-sentences.txt, 139
data/test-sentences.txt, 139
dumpParseTree(), 147
en.txt, 98
es.txt, 98
expected, 151, 153, 154, 156, 157
expected/, 108
expected/sine.out, 151
fr.txt, 98
gmake, 10
graham13.wav, 162
grammar.asmt.txt, 136
grammars/grammar.asmt.txt, 139
grammars/grammar.extended.txt, 139
grammars/grammar.original.txt, 139
grfst10.txt, 89
he.txt, 98
hwswc10.txt, 89
index/, 107
INSTALL, 10
it.txt, 98

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 214

java.txt, 98
junit.jar, 13
Makefile, 87, 105, 136
marf*.jar, 14
marf-<ver>, 12
marf-<ver>.jar, 10–12
marf-debug*.jar, 13
marf-debug-<ver>.jar, 11
marf-debug-*.jar, 10
marf-math-<ver>.jar, 11
marf-storage-<ver>.jar, 11
marf-util-<ver>.jar, 11
marf-utilimathstor-<ver>.jar, 11
marf.jar, 12, 13
marf.jpx, 12
marf/nlp, 107
marf/nlp/, 138
marf/nlp/Parsing/, 127, 138
marf/nlp/Parsing/GrammarCompiler/, 127, 138
marf/nlp/Parsing/GrammarCompiler/NonTerminal.java,

126
marf/nlp/Parsing/GrammarCompiler/ProbabilisticRule.java,

126
marf/nlp/Parsing/GrammarCompiler/Terminal.java,

126
marf/nlp/Parsing/ProbabilisticParser.java, 127,

147
marf/nlp/util, 102
math.out, 157
multiprocessor.txt, 89
nbproject/*.*, 12
NLPStreamTokenizer.java, 102
perl.txt, 98
ru.txt, 98
shared/lib, 13
src, 12
Test*, 14
test.*.langs, 108
test.langs, 100, 109
test.latin.langs, 109

test.non-latin.langs, 109
test.pls.langs, 109
test/, 107
training-*, 106
training-*/, 108
ulysses.txt, 89
webapp/<your application here>/WEB-INF/lib,

13
ZipfLaw.java, 87, 89

Filters
High Frequency Boost, 37
High-Pass Filter, 37
High-Pass High Frequency Boost Filter, 39

GIPSY, 159
GNU, 10, 12
GUI, 57

Hamming Window, 41
Implementation, 41
Theory, 41

High Frequency Boost, 37
High-Pass Filter, 37
High-Pass High Frequency Boost Filter, 39

Installation, 10
Binary, 11
Cygwin, 13
From Sources, 11
Linux, 12
Removal, 14
Requirements, 10
UNIXen, 12
Upgrade, 14
Windows, 12

Java, 3, 86, 87, 97, 102, 104, 105, 109, 125, 126, 136

Language Identification, 93
Application, 93
Hypotheses, 96
Programming Languages, 96
Zipf’s Law, 97

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 215

Limiations, 23
LPC, 44

MARF
Application Point of View, 15
Applications, 86
Architecture, 15
Authors, 4
Authors Emeritus, 4
Coding Conventions, 7
Contact, 4
Contributors, 5
Copyright, 4
Core Pipeline, 15, 17, 18
Current Limitaions, 23
Current maintainers, 5
External Applications, 159
GUI, 57
History, 5
Installation, 10
Introduction, 3
Packages, 18
Project Location, 6
Purpose, 3
Research Applications, 86
Source Code, 6
source code formatting, 6
Testing, 14
Testing Applications, 149
Versioning, 8

Methodology, 24
Artificial Neural Network, 51
Endpointing, 36
Feature Extraction, 41
Neural Network, 51
Preprocessing, 33

Min/Max Amplitudes, 46

Natural Language Processing, 55
Neural Network, 51
NLP, 55

Perl, 97, 98, 102, 104, 109
Preprocessing, 33

Endpointing, 36
Raw, 33

Probabilistic Parsing, 56

regression test application, 14
Research Applications

SpeakerIdentApp, 86
Results, 65

Sample Data, 60
Source code formatting, 6
Statistical N-gram Models, 55
Statistics, 54

Collection, 54
Estimators and Smoothing, 54
Processing, 54

Stemming, 56

Testing
Regression, 14

Testing Applications
MathTestApp, 156
TestFFT, 152
TestFilters, 149
TestLoaders, 154
TestLPC, 151
TestNN, 158
TestPlugin, 157
TestWaveLoader, 153

Tomcat, 13
Tools

bash, 87, 136
CVS, 163
cvs2cl.pl, 98
cvs2html.pl, 98
diff, 51
Excel, 59
gmake, 12, 87
gnuplot, 59
jar, 10, 12

MARF - v.0.3.0.6 (0.3.0 final) Programmer’s Manual 216

java, 12
javac, 10, 12
javadoc, 10, 12
less, 7
make, 10, 12, 87, 88, 106, 137
make clean, 14
more, 7
retrain, 64
tcsh, 105, 106
testing.bat, 64
testing.sh, 60, 87, 88, 106, 108, 136
training.sh, 106
vim, 7

Uninstall, 14
upgrading, 14

Versioning, 8

Zipf’s Law, 55, 86
Application, 86
Language Identification, 97

