Uses of Class
marf.Classification.ClassificationException

Packages that use ClassificationException
marf.Classification   
marf.Classification.Distance   
marf.Classification.Markov   
marf.Classification.NeuralNetwork   
marf.Classification.RandomClassification   
marf.Classification.Similarity   
marf.Classification.Stochastic   
marf.util   
 

Uses of ClassificationException in marf.Classification
 

Methods in marf.Classification that throw ClassificationException
 boolean Classification.classify()
          Generic classification routine that assumes a presence of a valid non-null feature extraction module for pipeline operation.
 boolean IClassification.classify()
          Generic classification routine.
 boolean IClassification.classify(double[] padFeatureVector)
          Generic classification routine.
static IClassification ClassificationFactory.create(java.lang.Integer poClassificationMethod, IFeatureExtraction poFeatureExtraction)
          Instantiates a Classification module indicated by the first parameter with the 2nd parameter as an argument.
static IClassification ClassificationFactory.create(int piClassificationMethod, IFeatureExtraction poFeatureExtraction)
          Instantiates a Classification module indicated by the first parameter with the 2nd parameter as an argument.
 boolean Classification.train()
          Generic training routine for building/updating mean vectors in the training set.
 boolean IClassification.train()
          Generic training routine for building/updating mean vectors in the training set.
 boolean Classification.train(double[] padFeatureVector)
          Generic training routine for building/updating mean vectors in the training set.
 boolean IClassification.train(double[] padFeatureVector)
          Generic training routine for building/updating mean vectors in the training set.
 

Uses of ClassificationException in marf.Classification.Distance
 

Methods in marf.Classification.Distance that throw ClassificationException
 boolean Distance.classify(double[] padFeatureVector)
          Classify the feature vector based on whatever distance() derivatives implement.
 

Uses of ClassificationException in marf.Classification.Markov
 

Methods in marf.Classification.Markov that throw ClassificationException
 boolean Markov.classify()
          Not Implemented.
 boolean Markov.train()
          Not Implemented.
 

Uses of ClassificationException in marf.Classification.NeuralNetwork
 

Methods in marf.Classification.NeuralNetwork that throw ClassificationException
 boolean NeuralNetwork.classify(double[] padFeatureVector)
          Neural Network implementation of classification routine.
 void NeuralNetwork.generate()
          Generates the initial network at random with the default parameters.
 void NeuralNetwork.generate(int piNumOfInputs, int[] paiHiddenLayers, int piNumOfOutputs)
          Generates a virgin net at random.
 void NeuralNetwork.setInputs(double[] padInputs)
          Sets inputs.
 boolean NeuralNetwork.train()
          Implements training of Neural Net.
 boolean NeuralNetwork.train(double[] padFeatureVector)
          Implements training of Neural Net given the feature vector.
 void NeuralNetwork.train(double[] padInput, int piExpectedLength, double pdTrainConst)
          Performs Actual training of the net.
 

Uses of ClassificationException in marf.Classification.RandomClassification
 

Methods in marf.Classification.RandomClassification that throw ClassificationException
 boolean RandomClassification.classify(double[] padFeatureVector)
          Picks an ID at random.
 boolean RandomClassification.train(double[] padFeatureVector)
          Simply stores incoming ID's to later pick one at random.
 

Uses of ClassificationException in marf.Classification.Similarity
 

Methods in marf.Classification.Similarity that throw ClassificationException
 boolean CosineSimilarityMeasure.classify(double[] padFeatureVector)
          Classify the feature vector based on whatever similarity() derivatives implement.
 double CosineSimilarityMeasure.similarity(double[] padVector1, double[] padVector2)
          Generic distance routine.
 

Uses of ClassificationException in marf.Classification.Stochastic
 

Methods in marf.Classification.Stochastic that throw ClassificationException
 boolean MaxProbabilityClassifier.classify()
          Performs language classification.
 boolean Stochastic.classify(double[] padFeatureVector)
          Not Implemented.
 boolean ZipfLaw.classify(double[] padFeatureVector)
           
 void ZipfLaw.collectStatistics(double[] padFeatures)
          Collects result statistics.
 void ZipfLaw.collectStatistics(java.io.StreamTokenizer poStreamTokenizer)
          Collects result statistics.
 boolean MaxProbabilityClassifier.train()
          Performs training of underlying statistical estimator and goes through restore/dump cycle to save the available languages.
 boolean Stochastic.train(double[] padFeatureVector)
          Not Implemented.
 boolean ZipfLaw.train(double[] padFeatureVector)
           
 

Uses of ClassificationException in marf.util
 

Methods in marf.util that return ClassificationException
static ClassificationException ExceptionFactory.createClassificationException()
           
static ClassificationException ExceptionFactory.createClassificationException(java.lang.Exception poException)
           
static ClassificationException ExceptionFactory.createClassificationException(java.lang.String pstrMessage)
           
static ClassificationException ExceptionFactory.createClassificationException(java.lang.String pstrMessage, java.lang.Exception poException)
           
 



SourceForge Logo