|
||||||||||
PREV NEXT | FRAMES NO FRAMES |
Uses of ClassificationException in marf.Classification |
---|
Methods in marf.Classification that throw ClassificationException | |
---|---|
boolean |
Classification.classify()
Generic classification routine that assumes a presence of a valid non-null feature extraction module for pipeline operation. |
boolean |
IClassification.classify()
Generic classification routine. |
boolean |
IClassification.classify(double[] padFeatureVector)
Generic classification routine. |
static IClassification |
ClassificationFactory.create(java.lang.Integer poClassificationMethod,
IFeatureExtraction poFeatureExtraction)
Instantiates a Classification module indicated by the first parameter with the 2nd parameter as an argument. |
static IClassification |
ClassificationFactory.create(int piClassificationMethod,
IFeatureExtraction poFeatureExtraction)
Instantiates a Classification module indicated by the first parameter with the 2nd parameter as an argument. |
boolean |
Classification.train()
Generic training routine for building/updating mean vectors in the training set. |
boolean |
IClassification.train()
Generic training routine for building/updating mean vectors in the training set. |
boolean |
Classification.train(double[] padFeatureVector)
Generic training routine for building/updating mean vectors in the training set. |
boolean |
IClassification.train(double[] padFeatureVector)
Generic training routine for building/updating mean vectors in the training set. |
Uses of ClassificationException in marf.Classification.Distance |
---|
Methods in marf.Classification.Distance that throw ClassificationException | |
---|---|
boolean |
Distance.classify(double[] padFeatureVector)
Classify the feature vector based on whatever distance() derivatives implement. |
Uses of ClassificationException in marf.Classification.Markov |
---|
Methods in marf.Classification.Markov that throw ClassificationException | |
---|---|
boolean |
Markov.classify()
Not Implemented. |
boolean |
Markov.train()
Not Implemented. |
Uses of ClassificationException in marf.Classification.NeuralNetwork |
---|
Methods in marf.Classification.NeuralNetwork that throw ClassificationException | |
---|---|
boolean |
NeuralNetwork.classify(double[] padFeatureVector)
Neural Network implementation of classification routine. |
void |
NeuralNetwork.generate()
Generates the initial network at random with the default parameters. |
void |
NeuralNetwork.generate(int piNumOfInputs,
int[] paiHiddenLayers,
int piNumOfOutputs)
Generates a virgin net at random. |
void |
NeuralNetwork.setInputs(double[] padInputs)
Sets inputs. |
boolean |
NeuralNetwork.train()
Implements training of Neural Net. |
boolean |
NeuralNetwork.train(double[] padFeatureVector)
Implements training of Neural Net given the feature vector. |
void |
NeuralNetwork.train(double[] padInput,
int piExpectedLength,
double pdTrainConst)
Performs Actual training of the net. |
Uses of ClassificationException in marf.Classification.RandomClassification |
---|
Methods in marf.Classification.RandomClassification that throw ClassificationException | |
---|---|
boolean |
RandomClassification.classify(double[] padFeatureVector)
Picks an ID at random. |
boolean |
RandomClassification.train(double[] padFeatureVector)
Simply stores incoming ID's to later pick one at random. |
Uses of ClassificationException in marf.Classification.Similarity |
---|
Methods in marf.Classification.Similarity that throw ClassificationException | |
---|---|
boolean |
CosineSimilarityMeasure.classify(double[] padFeatureVector)
Classify the feature vector based on whatever similarity() derivatives implement. |
double |
CosineSimilarityMeasure.similarity(double[] padVector1,
double[] padVector2)
Generic distance routine. |
Uses of ClassificationException in marf.Classification.Stochastic |
---|
Methods in marf.Classification.Stochastic that throw ClassificationException | |
---|---|
boolean |
MaxProbabilityClassifier.classify()
Performs language classification. |
boolean |
Stochastic.classify(double[] padFeatureVector)
Not Implemented. |
boolean |
ZipfLaw.classify(double[] padFeatureVector)
|
void |
ZipfLaw.collectStatistics(double[] padFeatures)
Collects result statistics. |
void |
ZipfLaw.collectStatistics(java.io.StreamTokenizer poStreamTokenizer)
Collects result statistics. |
boolean |
MaxProbabilityClassifier.train()
Performs training of underlying statistical estimator and goes through restore/dump cycle to save the available languages. |
boolean |
Stochastic.train(double[] padFeatureVector)
Not Implemented. |
boolean |
ZipfLaw.train(double[] padFeatureVector)
|
Uses of ClassificationException in marf.util |
---|
Methods in marf.util that return ClassificationException | |
---|---|
static ClassificationException |
ExceptionFactory.createClassificationException()
|
static ClassificationException |
ExceptionFactory.createClassificationException(java.lang.Exception poException)
|
static ClassificationException |
ExceptionFactory.createClassificationException(java.lang.String pstrMessage)
|
static ClassificationException |
ExceptionFactory.createClassificationException(java.lang.String pstrMessage,
java.lang.Exception poException)
|
|
||||||||||
PREV NEXT | FRAMES NO FRAMES |