A B C D E F G H I J L M N O P Q R S T U W

A

addClassificationParam(Object) - Method in class marf.Storage.ModuleParams
Adds (appends) a single classification parameter object
addClassificationParams(Vector) - Method in class marf.Storage.ModuleParams
Adds (appends) classification parameters vector
addFeatureExtractionParam(Object) - Method in class marf.Storage.ModuleParams
Adds (appends) a single feature extraction parameter object
addFeatureExtractionParams(Vector) - Method in class marf.Storage.ModuleParams
Adds (appends) feature extraction parameters vector
addFeatureVector(double[], String, int, int, int) - Method in class marf.Storage.TrainingSet
Adds new feature vector to the mean and recomputes the mean
addFFT(double[]) - Method in class marf.gui.Spectrogram
Adds FFT spectrum to the data to dump
addFilename(String) - Method in class marf.Storage.TrainingSet.TrainingSample
A filename to the training set.
addInput(Neuron, double) - Method in class marf.Classification.NeuralNetwork.Neuron
Adds an input neuron and its associated weight
addLPC(double[], int, int) - Method in class marf.gui.Spectrogram
Adds LPC spectrum to the data to dump
addOutput(Neuron) - Method in class marf.Classification.NeuralNetwork.Neuron
Adds an output neuron
addPreprocessingParam(Object) - Method in class marf.Storage.ModuleParams
Adds (appends) a single preprocessing parameter object
addPreprocessingParams(Vector) - Method in class marf.Storage.ModuleParams
Adds (appends) preprocessing parameters vector
adFeatures - Variable in class marf.FeatureExtraction.FeatureExtraction
An array of features extracted (coefficiencies and/or amplitude values)
adSample - Variable in class marf.Storage.Sample
Sample data array (amplitudes)
autocorrelation(double[], int) - Static method in class marf.FeatureExtraction.LPC.LPC
Implements the least-square autocorrelation method

B

BANDPASS_FFT_FILTER - Static variable in class marf.MARF
Indicates to use bandpass filter
BandpassFilter - class marf.Preprocessing.FFTFilter.BandpassFilter.
Class BandpassFilter
BandpassFilter(Sample) - Constructor for class marf.Preprocessing.FFTFilter.BandpassFilter
BandpassFilter Constructor

C

Cepstral - class marf.FeatureExtraction.Cepstral.Cepstral.
Class Cepstral
CEPSTRAL - Static variable in class marf.MARF
Indicates to use cepstral analysis
Cepstral(Preprocessing) - Constructor for class marf.FeatureExtraction.Cepstral.Cepstral
Cepstral Constructor
CHEBYSHEV_DISTANCE - Static variable in class marf.MARF
Indicates to use Chebyshev distance for classification
ChebyshevDistance - class marf.Classification.Distance.ChebyshevDistance.
Class ChebyshevDistance
ChebyshevDistance(FeatureExtraction) - Constructor for class marf.Classification.Distance.ChebyshevDistance
ChebyshevDistance Constructor
Classification - class marf.Classification.Classification.
Class Classification
Classification(FeatureExtraction) - Constructor for class marf.Classification.Classification
Generic Classification Constructor
ClassificationException - exception marf.Classification.ClassificationException.
Class ClassificationException
ClassificationException(String) - Constructor for class marf.Classification.ClassificationException
Generic exception
classify() - Method in class marf.Classification.Classification
Generic classification routine.
classify() - Method in class marf.Classification.Markov.Markov
Not Implemented
classify() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Neural Network implementation of classification routine
classify() - Method in class marf.Classification.Stochastic.Stochastic
Not Implemented
classify() - Method in class marf.Classification.Distance.Distance
Classify the feature vector based on whatever distance() derivatives implement.
classify() - Method in class marf.Classification.RandomClassification.RandomClassification
Picks an ID at random
commit() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Applies changes made to neurons on every net's layer
commit() - Method in class marf.Classification.NeuralNetwork.Neuron
Applies weight changes
cropAudio(double, double) - Method in class marf.Preprocessing.Preprocessing
Derivatives implement this method to crop arbitrary part of the audio sample.
cropAudio(double, double) - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of cropAudio() for testing.
cropAudio(double, double) - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
cropAudio(double, double) - Method in class marf.Preprocessing.FFTFilter.BandpassFilter
Stub implementation of cropAudio()
cropAudio(double, double) - Method in class marf.Preprocessing.FFTFilter.HighFrequencyBoost
Stub implementation of cropAudio()
cropAudio(double, double) - Method in class marf.Preprocessing.FFTFilter.HighPassFilter
Stub implementation of cropAudio()
cropAudio(double, double) - Method in class marf.Preprocessing.FFTFilter.LowPassFilter
Stub implementation of cropAudio()

D

data - Variable in class marf.gui.Spectrogram
The data vector
DEBUG - Static variable in class marf.MARF
Debug flag.
debug(String) - Static method in class marf.MARF
Outputs param to STDERR if DEBUG is enabled
DEFAULT_CHANNELS - Static variable in class marf.Storage.Loaders.WAVLoader
Default 1
DEFAULT_CHUNK_SIZE - Static variable in class marf.FeatureExtraction.FFT.FFT
Default number (1024) of doubles per chunk in the window.
DEFAULT_CHUNK_SIZE - Static variable in class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction
Default number (256) of doubles per chunk in a feature vector.
DEFAULT_EPOCH_NUMBER - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
Default number of epoch iterations of 64 if none supplied
DEFAULT_FREQUENCY - Static variable in class marf.Storage.Loaders.WAVLoader
Default 8000 Hz
DEFAULT_MIN_ERROR - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
Default minimum training error of 0.1 if none supplied
DEFAULT_OUTPUT_NEURON_BITS - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
How many binary Neurons in the output layer.
DEFAULT_SAMPLE_BIT_SIZE - Static variable in class marf.Storage.Loaders.WAVLoader
Default 16
DEFAULT_TRAINING_CONSTANT - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
Default training constant of 1 if none supplied
delta - Variable in class marf.Classification.NeuralNetwork.Neuron
Used in error calculation
Distance - class marf.Classification.Distance.Distance.
Class Distance
distance(double[], double[]) - Method in class marf.Classification.Distance.ChebyshevDistance
ChebyshevDistance implementation
distance(double[], double[]) - Method in class marf.Classification.Distance.Distance
Generic distance routine.
distance(double[], double[]) - Method in class marf.Classification.Distance.EuclideanDistance
EuclideanDistance implementation
distance(double[], double[]) - Method in class marf.Classification.Distance.MahalanobisDistance
Partial MahalanobisDistance implementation
distance(double[], double[]) - Method in class marf.Classification.Distance.MinkowskiDistance
MinkowskiDistance implementation
Distance(FeatureExtraction) - Constructor for class marf.Classification.Distance.Distance
Distance Constructor
DoFFT(double[], double[], double[], double[], int) - Static method in class marf.FeatureExtraction.FFT.FFT
FFT algorithm, translated from "Numerical Recipes in C++" Implements the Fast Fourier Transform, which performs a discrete Fourier transform in O(n*log(n)).
DoLPC(double[], double[], double[], int) - Static method in class marf.FeatureExtraction.LPC.LPC
Does LPC algorithm NOTE: input is assumed to be windowed, ie: input.length = N
Dummy - class marf.Preprocessing.Dummy.Dummy.
Class Dummy
DUMMY - Static variable in class marf.MARF
Indicates to use Dummy preprocessing module (just normalization)
Dummy(Sample) - Constructor for class marf.Preprocessing.Dummy.Dummy
Dummy Constructor
DUMP_CSV_TEXT - Static variable in class marf.Storage.TrainingSet
Indicates to dump training set data as CSV text file.
DUMP_GZIP_BINARY - Static variable in class marf.Storage.TrainingSet
Indicates to dump training set data as gzipped binary file.
dump() - Method in class marf.Preprocessing.Preprocessing
Not Implemented
dump() - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of dump() for testing.
dump() - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
dump() - Method in class marf.FeatureExtraction.FFT.FFT
Not Implemented
dump() - Method in class marf.FeatureExtraction.LPC.LPC
Not Implemented
dump() - Method in class marf.FeatureExtraction.F0.F0
Not Implemented
dump() - Method in class marf.FeatureExtraction.Cepstral.Cepstral
Not Implemented
dump() - Method in class marf.FeatureExtraction.Segmentation.Segmentation
Not Implemented
dump() - Method in class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction
Not Implemented
dump() - Method in class marf.Classification.Classification
Generic implementation of dump() for TrainingSet
dump() - Method in class marf.Classification.Markov.Markov
Not Implemented
dump() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Dumps Neural Net to an XML file
dump() - Method in class marf.Classification.Stochastic.Stochastic
Not Implemented
dump() - Method in class marf.Classification.RandomClassification.RandomClassification
Dumps "training set" of IDs
dump() - Method in interface marf.Storage.StorageManager
An object must know how dump itself to a file.
dump() - Method in class marf.Storage.TrainingSet
Dump the current training set to disk
dump() - Method in class marf.gui.Spectrogram
Dumps spectrogram
dump() - Method in class marf.gui.WaveGrapher
Dumps graph of wave in the CSV format
dump(BufferedWriter) - Method in class marf.Storage.TrainingSet.TrainingSample
Write one training sample to a text file.
dumpXML(String) - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Dumps Neural Network as XML file

E

Endpoint - class marf.Preprocessing.Endpoint.Endpoint.
Class Endpoint
ENDPOINT - Static variable in class marf.MARF
Indicates to use endpointing
Endpoint(Sample) - Constructor for class marf.Preprocessing.Endpoint.Endpoint
Endpoint Constructor
EUCLIDEAN_DISTANCE - Static variable in class marf.MARF
Indicates to use Euclidean distance for classification
EuclideanDistance - class marf.Classification.Distance.EuclideanDistance.
Class EuclideanDistance
EuclideanDistance(FeatureExtraction) - Constructor for class marf.Classification.Distance.EuclideanDistance
EuclideanDistance Constructor
eval() - Method in class marf.Classification.NeuralNetwork.Neuron
Evaluates current neuron's value
existsFilename(String) - Method in class marf.Storage.TrainingSet.TrainingSample
Check existance of the file in the training set.
extractFeatures() - Method in class marf.FeatureExtraction.FeatureExtraction
Abstract feature extraction routine.
extractFeatures() - Method in class marf.FeatureExtraction.FFT.FFT
FFT Implementation of extractFeatures()
extractFeatures() - Method in class marf.FeatureExtraction.LPC.LPC
LPC Implementation of extractFeatures()
extractFeatures() - Method in class marf.FeatureExtraction.F0.F0
Not Implemented
extractFeatures() - Method in class marf.FeatureExtraction.Cepstral.Cepstral
Not Implemented
extractFeatures() - Method in class marf.FeatureExtraction.Segmentation.Segmentation
Not Implemented
extractFeatures() - Method in class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction
Random Gaussian feature extracton.

F

F0 - class marf.FeatureExtraction.F0.F0.
Class F0
F0 - Static variable in class marf.MARF
Indicates to use F0
F0(Preprocessing) - Constructor for class marf.FeatureExtraction.F0.F0
F0 Constructor
FeatureExtraction - class marf.FeatureExtraction.FeatureExtraction.
Class FeatureExtraction
FeatureExtraction(Preprocessing) - Constructor for class marf.FeatureExtraction.FeatureExtraction
FeatureExtraction constructor
FeatureExtractionException - exception marf.FeatureExtraction.FeatureExtractionException.
Class FeatureExtractionException
FeatureExtractionException(String) - Constructor for class marf.FeatureExtraction.FeatureExtractionException
Generic exception
FFT - class marf.FeatureExtraction.FFT.FFT.
Class FFT
FFT - Static variable in class marf.MARF
Indicates to use FFT
FFT(Preprocessing) - Constructor for class marf.FeatureExtraction.FFT.FFT
FFT Constructor
FFTFilter - class marf.Preprocessing.FFTFilter.FFTFilter.
FFTFilter class
FFTFilter(Sample) - Constructor for class marf.Preprocessing.FFTFilter.FFTFilter
FFTFilter Constructor
filter(double[], double[]) - Method in class marf.Preprocessing.FFTFilter.FFTFilter
Perform a filter by the following algorithm: sample -> window -> FFT -> buffer buffer * frequency response buffer -> IFFT -> window -> sample Window used is square root of Hamming window, because the sum at half-window overlap is a constant, which avoids amplitude distortion from noise.
freqResponse - Variable in class marf.Preprocessing.FFTFilter.FFTFilter
Frequency repsonse to be multiplied by the incoming value

G

generate(int, int[], int) - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Generates virgin net at random.
getAudioFormat() - Method in class marf.Storage.Sample
 
getClassification() - Static method in class marf.MARF
Retrieves current Classification reference
getClassificationMethod() - Static method in class marf.MARF
Gets classification method to be used
getClassificationParams() - Method in class marf.Storage.ModuleParams
 
getConfig() - Static method in class marf.MARF
Returns a string representation of the current MARF configuration
getCurrentSubject() - Static method in class marf.MARF
Gets ID of a subject currently being trained on
getDumpMode() - Method in class marf.Storage.TrainingSet
Retrieves current dump mode
getDumpSpectrogram() - Static method in class marf.MARF
Whether spectrogram wanted or not
getDumpWaveGraph() - Static method in class marf.MARF
Whether wave graph wanted or not
getFeatureExtraction() - Static method in class marf.MARF
Retrieves current FeatureExtraction reference
getFeatureExtractionMethod() - Static method in class marf.MARF
Gets currently selected feature extraction method.
getFeatureExtractionMethod() - Method in class marf.Storage.TrainingSet
Returns preprocessing method used on this training set
getFeatureExtractionParams() - Method in class marf.Storage.ModuleParams
 
getFeaturesArray() - Method in class marf.FeatureExtraction.FeatureExtraction
Allows retrieval of a feature vector
getID() - Method in class marf.Storage.Result
Returns result's ID
getIntVersion() - Static method in class marf.MARF
Returns an integer representation of the MARF version
getMeanCount() - Method in class marf.Storage.TrainingSet.TrainingSample
Retrieves current mean count
getMeanVector() - Method in class marf.Storage.TrainingSet.TrainingSample
Retrieves the mean vector
getMessage() - Method in class marf.util.MARFException
Returns string representation of the error message.
getModuleParams() - Static method in class marf.MARF
Gets module-specific parameters an application programmer passed on to the module
getNextChunk(double[]) - Method in class marf.Storage.Sample
Gets the next chunk of audio data and places it into chunkArray.
getPreprocessing() - Static method in class marf.MARF
Retrieves current Preprocessing reference
getPreprocessingMethod() - Static method in class marf.MARF
Gets currently selected preprocessing method.
getPreprocessingMethod() - Method in class marf.Storage.TrainingSet
Returns preprocessing method used on this training set
getPreprocessingParams() - Method in class marf.Storage.ModuleParams
 
getRes() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Gets outputs of a neural network run
getResult() - Static method in class marf.MARF
Gets the entire Result object
getResult() - Method in class marf.Classification.Classification
Retrieves the classification result
getSample() - Static method in class marf.MARF
Retrieves current Sample reference
getSample() - Method in class marf.Preprocessing.Preprocessing
Returns enclosed sample.
getSample() - Method in class marf.Storage.SampleLoader
 
getSampleArray() - Method in class marf.Storage.Sample
Retrieves array containing audio data of the entire sample.
getSampleFile() - Static method in class marf.MARF
Obtains filename of a sample currently being processed
getSampleFormat() - Static method in class marf.MARF
Gets input sample file format
getSampleLoader() - Static method in class marf.MARF
Retrieves current SampleLoader reference
getSampleSize() - Method in class marf.Storage.Sample
Returns the length of the sample.
getSampleSize() - Method in class marf.Storage.SampleLoader
Retrieves the length of the sample (# of audio data in the audio stream).
getSecondClosestID() - Method in class marf.Storage.Result
Returns second closest ID
getSubjectID() - Method in class marf.Storage.TrainingSet.TrainingSample
Retrieves Subject ID of a particular training sample
getTrainingSamples() - Method in class marf.Storage.TrainingSet
Retrieves training samples
getTrainingSetFile() - Method in class marf.Storage.TrainingSet
Retrieves current training set file name
getVersion() - Static method in class marf.MARF
Returns a string representation of the MARF version

H

hamming(double[]) - Static method in class marf.FeatureExtraction.FeatureExtraction
Applies hamming window to an array of doubles
hamming(int, int) - Static method in class marf.FeatureExtraction.FeatureExtraction
Retrieves a single value of hamming window based on length and index within the widow
HIDDEN - Static variable in class marf.Classification.NeuralNetwork.Neuron
Indicates middle (hidden) neuron
HIGH_FREQUENCY_BOOST_FFT_FILTER - Static variable in class marf.MARF
Indicates to use filter boosting high frequencies
HIGH_PASS_FFT_FILTER - Static variable in class marf.MARF
Indicates to use high pass FFT filter
HighFrequencyBoost - class marf.Preprocessing.FFTFilter.HighFrequencyBoost.
HighFrequencyBoost Class
HighFrequencyBoost(Sample) - Constructor for class marf.Preprocessing.FFTFilter.HighFrequencyBoost
HighFrequencyBoost Constructor
HighPassFilter - class marf.Preprocessing.FFTFilter.HighPassFilter.
HighPassFilter Class
HighPassFilter(Sample) - Constructor for class marf.Preprocessing.FFTFilter.HighPassFilter
HighPassFilter Constructor

I

iArrayIndex - Variable in class marf.Storage.Sample
Chunk pointer in the sample array
iFormat - Variable in class marf.Storage.Sample
Sample's format
incMeanCount() - Method in class marf.Storage.TrainingSet.TrainingSample
Increases mean count by one
indent(BufferedWriter, int) - Static method in class marf.Classification.NeuralNetwork.NeuralNetwork
Indents the output according to the requested tabulation.
initialize(String, boolean) - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Parses XML and produces NNet.
INPUT - Static variable in class marf.Classification.NeuralNetwork.Neuron
Indicates input neuron
InvalidSampleFormatException - exception marf.util.InvalidSampleFormatException.
Class InvalidSampleFormatException
InvalidSampleFormatException(int) - Constructor for class marf.util.InvalidSampleFormatException
Exception for specific sample format
InvalidSampleFormatException(String) - Constructor for class marf.util.InvalidSampleFormatException
Generic exception

J

JAXP_SCHEMA_LANGUAGE - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
JAXP 1.2 Schema
JAXP_SCHEMA_SOURCE - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
JAXP 1.2 Schem URL

L

loadSample(File) - Method in class marf.Storage.SampleLoader
SampleLoader interface.
loadSample(File) - Method in class marf.Storage.Loaders.MP3Loader
Not Implemented
loadSample(File) - Method in class marf.Storage.Loaders.ULAWLoader
Not Implemented
loadSample(File) - Method in class marf.Storage.Loaders.WAVLoader
Loads WAV sample data from a file.
loadSample(String) - Method in class marf.Storage.SampleLoader
Same as loadSample(File) but takes filename as an argument.
LOW_PASS_FFT_FILTER - Static variable in class marf.MARF
Indicates to use low pass FFT filter
LowPassFilter - class marf.Preprocessing.FFTFilter.LowPassFilter.
LowPassFilter Class
LowPassFilter(Sample) - Constructor for class marf.Preprocessing.FFTFilter.LowPassFilter
LowPassFilter Constructor
LPC - class marf.FeatureExtraction.LPC.LPC.
Class LPC
LPC - Static variable in class marf.MARF
Indicates to use LPC
LPC(Preprocessing) - Constructor for class marf.FeatureExtraction.LPC.LPC
LPC Constructor

M

MAHALANOBIS_DISTANCE - Static variable in class marf.MARF
Indicates to use Mahalanobis distance for classification
MahalanobisDistance - class marf.Classification.Distance.MahalanobisDistance.
Class MahalanobisDistance
MahalanobisDistance(FeatureExtraction) - Constructor for class marf.Classification.Distance.MahalanobisDistance
MahalanobisDistance Constructor
MARF - class marf.MARF.
Class MARF
MARFException - exception marf.util.MARFException.
Class MARFException
MARFException(String) - Constructor for class marf.util.MARFException
Generic exception
MARFException(String, Exception) - Constructor for class marf.util.MARFException
This is used for debug purposes only with some unusual Exception's.
Markov - class marf.Classification.Markov.Markov.
Class Markov
MARKOV - Static variable in class marf.MARF
Indicates to use Hidden Markov Models for classification
Markov(FeatureExtraction) - Constructor for class marf.Classification.Markov.Markov
Markov Constructor
max - Variable in class marf.gui.Spectrogram
Current maximum
min - Variable in class marf.gui.Spectrogram
Current minimum
MINKOWSKI_DISTANCE - Static variable in class marf.MARF
Indicates to use Minkowski distance for classification
MinkowskiDistance - class marf.Classification.Distance.MinkowskiDistance.
Class MinkowskiDistance
MinkowskiDistance(FeatureExtraction) - Constructor for class marf.Classification.Distance.MinkowskiDistance
MinkowskiDistance Constructor
ModuleParams - class marf.Storage.ModuleParams.
Class ModuleParams
ModuleParams() - Constructor for class marf.Storage.ModuleParams
Default Constructor
MP3 - Static variable in class marf.MARF
Indicates MP3 incoming sample file format
MP3 - Static variable in class marf.Storage.Sample
MP3 sample format
MP3Loader - class marf.Storage.Loaders.MP3Loader.
Not Implemented
MP3Loader() - Constructor for class marf.Storage.Loaders.MP3Loader
MP3 Loader Constructor

N

name - Variable in class marf.Classification.NeuralNetwork.Neuron
Neuron's name
NEURAL_NETWORK - Static variable in class marf.MARF
Indicates to use Neural Network for classification
NeuralNetwork - class marf.Classification.NeuralNetwork.NeuralNetwork.
Class NeuralNetwork
NeuralNetwork(FeatureExtraction) - Constructor for class marf.Classification.NeuralNetwork.NeuralNetwork
NeuralNetwork Constructor
Neuron - class marf.Classification.NeuralNetwork.Neuron.
Class Neuron
Neuron(String, int) - Constructor for class marf.Classification.NeuralNetwork.Neuron
Neuron Constructor
NormalFFT(double[], double[]) - Static method in class marf.FeatureExtraction.FFT.FFT
Performs a normal FFT, taking a real input (supposedly an audio sample) and returns the frequency analysis in terms of "magnitude".
NormalFFT(double[], double[], double[]) - Static method in class marf.FeatureExtraction.FFT.FFT
Performs a normal FFT, taking a real input (supposedly an audio sample) and returns the frequency analysis in terms of "magnitude" and "phase angle".
normalize() - Method in class marf.Preprocessing.Preprocessing
Normalization of incoming samples by amplitude.
NotImplementedException - exception marf.util.NotImplementedException.
Class NotImplementedException
NotImplementedException(String) - Constructor for class marf.util.NotImplementedException
Generic exception

O

oAudioFormat - Variable in class marf.Storage.SampleLoader
Properties of a wave.
oAudioInputStream - Variable in class marf.Storage.SampleLoader
Stream representing wave sample.
oByteArrayOutputStream - Variable in class marf.Storage.SampleLoader
Output stream used for writing audio data.
oFeatureExtraction - Variable in class marf.Classification.Classification
Reference to the FeatureExtraction object
oPreprocessing - Variable in class marf.FeatureExtraction.FeatureExtraction
Internal reference to the Preprocessing module
oResult - Variable in class marf.Classification.Classification
Classification Result
oSample - Variable in class marf.Preprocessing.Preprocessing
Sample container
oSample - Variable in class marf.Storage.SampleLoader
Sample references of the sample to be loaded.
oTrainingSet - Variable in class marf.Classification.Classification
TrainingSet Container
OUTPUT - Static variable in class marf.Classification.NeuralNetwork.Neuron
Indicates output neuron
outputEncoding - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
All output will use this encoding

P

preprocess() - Method in class marf.Preprocessing.Preprocessing
Derivatives implement this method to do general preprocessing and perhaps calling removeNoise() and removeSilence().
preprocess() - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of preprocess() for testing.
preprocess() - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
preprocess() - Method in class marf.Preprocessing.FFTFilter.FFTFilter
FFTFilter implementation of preprocess()
preprocess() - Method in class marf.Preprocessing.FFTFilter.HighFrequencyBoost
Overrides FFTFilter's preprocess with extra normalization after boost.
Preprocessing - class marf.Preprocessing.Preprocessing.
Class Preprocessing
Preprocessing(Sample) - Constructor for class marf.Preprocessing.Preprocessing
Preprocessing Constructor
PreprocessingException - exception marf.Preprocessing.PreprocessingException.
Class PreprocessingException
PreprocessingException(String) - Constructor for class marf.Preprocessing.PreprocessingException
Generic exception
printXML(BufferedWriter, int) - Method in class marf.Classification.NeuralNetwork.Neuron
Dumps XML of the current Neuron

Q

queryResultID() - Static method in class marf.MARF
Queries for the final classification result

R

RANDOM_CLASSIFICATION - Static variable in class marf.MARF
Indicates to use random classification
RANDOM_FEATURE_EXTRACTION - Static variable in class marf.MARF
Indicates to use random feature extraction
RandomClassification - class marf.Classification.RandomClassification.RandomClassification.
Class RandomClassification
RandomClassification(FeatureExtraction) - Constructor for class marf.Classification.RandomClassification.RandomClassification
RandomClassification Constructor
RandomFeatureExtraction - class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction.
Class RandomFeatureExtraction.
RandomFeatureExtraction(Preprocessing) - Constructor for class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction
RandomFeatureExtraction Constructor
readAudioData(double[]) - Method in class marf.Storage.SampleLoader
Reads audio data from the sample's audio stream into paiAudioData.
readAudioData(double[]) - Method in class marf.Storage.Loaders.MP3Loader
Not Implemented
readAudioData(double[]) - Method in class marf.Storage.Loaders.ULAWLoader
Not Implemented
readAudioData(double[]) - Method in class marf.Storage.Loaders.WAVLoader
Buffers out the contents of audioBuffer into audioData
recognize() - Static method in class marf.MARF
Recognition/Identification mode
removeNoise() - Method in class marf.Preprocessing.Preprocessing
Derivatives implement this method to remove noise from the sample.
removeNoise() - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of removeNoise() for testing.
removeNoise() - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
removeNoise() - Method in class marf.Preprocessing.FFTFilter.BandpassFilter
Stub implementation of removeNoise()
removeNoise() - Method in class marf.Preprocessing.FFTFilter.HighFrequencyBoost
Stub implementation of removeNoise()
removeNoise() - Method in class marf.Preprocessing.FFTFilter.HighPassFilter
Stub implementation of removeNoise()
removeNoise() - Method in class marf.Preprocessing.FFTFilter.LowPassFilter
Stub implementation of removeNoise()
removeSilence() - Method in class marf.Preprocessing.Preprocessing
Derivatives implement this method to remove silence.
removeSilence() - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of removeSilence() for testing.
removeSilence() - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
removeSilence() - Method in class marf.Preprocessing.FFTFilter.BandpassFilter
Stub implementation of removeSilence()
removeSilence() - Method in class marf.Preprocessing.FFTFilter.HighFrequencyBoost
Stub implementation of removeSilence()
removeSilence() - Method in class marf.Preprocessing.FFTFilter.HighPassFilter
Stub implementation of removeSilence()
removeSilence() - Method in class marf.Preprocessing.FFTFilter.LowPassFilter
Stub implementation of removeSilence()
reset() - Method in class marf.Storage.SampleLoader
Resets the marker for the audio stream.
resetArrayMark() - Method in class marf.Storage.Sample
Resets the marker used for reading audio data from sample array
restore() - Method in class marf.Preprocessing.Preprocessing
Not Implemented
restore() - Method in class marf.Preprocessing.Dummy.Dummy
Dummy implementation of restore() for testing.
restore() - Method in class marf.Preprocessing.Endpoint.Endpoint
Not Implemented
restore() - Method in class marf.FeatureExtraction.FFT.FFT
Not Implemented
restore() - Method in class marf.FeatureExtraction.LPC.LPC
Not Implemented
restore() - Method in class marf.FeatureExtraction.F0.F0
Not Implemented
restore() - Method in class marf.FeatureExtraction.Cepstral.Cepstral
Not Implemented
restore() - Method in class marf.FeatureExtraction.Segmentation.Segmentation
Not Implemented
restore() - Method in class marf.FeatureExtraction.RandomFeatureExtraction.RandomFeatureExtraction
Not Implemented
restore() - Method in class marf.Classification.Classification
Generic implementation of restore() for TrainingSet
restore() - Method in class marf.Classification.Markov.Markov
Not Implemented
restore() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Restores Neural Net from an XML file
restore() - Method in class marf.Classification.Stochastic.Stochastic
Not Implemented
restore() - Method in class marf.Classification.RandomClassification.RandomClassification
Restores "training set" of IDs
restore() - Method in interface marf.Storage.StorageManager
An object must know how retore its non-transient data structures from a file.
restore() - Method in class marf.Storage.TrainingSet
Retrieve the current training set from disk
restore() - Method in class marf.gui.Spectrogram
Not implemented
restore() - Method in class marf.gui.WaveGrapher
Not implemented
restore(BufferedReader) - Method in class marf.Storage.TrainingSet.TrainingSample
Retrieve one training sample from a text file.
result - Variable in class marf.Classification.NeuralNetwork.Neuron
Current Neuron's result
Result - class marf.Storage.Result.
Class Result
Result() - Constructor for class marf.Storage.Result
Default Constructor Equivalent to Result(0)
Result(double[]) - Constructor for class marf.Storage.Result
ResultSet Constructor Equivalent to Result(0, padResultSet)
Result(int) - Constructor for class marf.Storage.Result
ID Constructor
Result(int, double[]) - Constructor for class marf.Storage.Result
ID ResultSet Constructor
Result(int, Vector) - Constructor for class marf.Storage.Result
ID Vector ResultSet Constructor

S

Sample - class marf.Storage.Sample.
Class Sample
Sample() - Constructor for class marf.Storage.Sample
Default constructor
Sample(double[]) - Constructor for class marf.Storage.Sample
Accepts pre-set sample for testing
Sample(int) - Constructor for class marf.Storage.Sample
Constructor with format indication
SampleLoader - class marf.Storage.SampleLoader.
Absract Class SampleLoader
SampleLoader() - Constructor for class marf.Storage.SampleLoader
Default constructor.
saveSample(File) - Method in class marf.Storage.SampleLoader
SampleLoader interface.
saveSample(File) - Method in class marf.Storage.Loaders.MP3Loader
Not Implemented
saveSample(File) - Method in class marf.Storage.Loaders.ULAWLoader
Not Implemented
saveSample(File) - Method in class marf.Storage.Loaders.WAVLoader
Saves the wave into a file for playback
saveSample(String) - Method in class marf.Storage.SampleLoader
Same as saveSample(File) but takes filename as an argument.
Segmentation - class marf.FeatureExtraction.Segmentation.Segmentation.
Class Segmentation
SEGMENTATION - Static variable in class marf.MARF
Indicates to use segmentation
Segmentation(Preprocessing) - Constructor for class marf.FeatureExtraction.Segmentation.Segmentation
Segmentation Constructor
setAudioFormat(int) - Method in class marf.Storage.Sample
Sets current format of a sample
setClassificationMethod(int) - Static method in class marf.MARF
Sets classification method to be used
setClassificationParams(Vector) - Method in class marf.Storage.ModuleParams
Sets classification parameters vector
setCurrentSubject(int) - Static method in class marf.MARF
Sets ID of a subject currently being trained on
setDumpMode(int) - Method in class marf.Storage.TrainingSet
Sets the dump mode
setDumpSpectrogram(boolean) - Static method in class marf.MARF
Indicates whether spectrogram is wanted as an output of a FeatureExtraction module
setDumpWaveGraph(boolean) - Static method in class marf.MARF
Indicates whether wave graph is wanted as an output
setFeatureExtractionMethod(int) - Static method in class marf.MARF
Sets feature extraction method to be used
setFeatureExtractionMethod(int) - Method in class marf.Storage.TrainingSet
Sets feature extraction method used on this training set
setFeatureExtractionParams(Vector) - Method in class marf.Storage.ModuleParams
Sets feature extraction parameters vector
setFrequencyResponse(double[]) - Method in class marf.Preprocessing.FFTFilter.FFTFilter
Sets frequency response.
setID(int) - Method in class marf.Storage.Result
Sets ID, should only be called by a Classification module
setMeanVector(double[]) - Method in class marf.Storage.TrainingSet.TrainingSample
Sets new mean vector
setModuleParams(ModuleParams) - Static method in class marf.MARF
Sets module-specific parameters an application programmer wishes to pass on to the module
setPreprocessingMethod(int) - Static method in class marf.MARF
Sets preprocessing method to be used
setPreprocessingMethod(int) - Method in class marf.Storage.TrainingSet
Sets feature extraction method used on this training set
setPreprocessingParams(Vector) - Method in class marf.Storage.ModuleParams
Sets preprocessing parameters vector
setSample(Sample) - Method in class marf.Storage.SampleLoader
Sets internal sample reference from outside
setSampleArray(double[]) - Method in class marf.Storage.Sample
Sets the internal sample array (adSample) with the specified argument.
setSampleFile(String) - Static method in class marf.MARF
Sets input sample file name
setSampleFormat(int) - Static method in class marf.MARF
Sets input sample file format
setSamplesDir(String) - Static method in class marf.MARF
Sets directory with sample files to be read from
setSubjectID(int) - Method in class marf.Storage.TrainingSet.TrainingSample
Sets new Subject ID
setTrainingSetFile(String) - Method in class marf.Storage.TrainingSet
Sets current training set file name
size() - Method in class marf.Storage.TrainingSet
Gets the size of the feature vectors set
Spectrogram - class marf.gui.Spectrogram.
Class Spectrogram
Spectrogram() - Constructor for class marf.gui.Spectrogram
Constructor
Spectrogram(String) - Constructor for class marf.gui.Spectrogram
Constructor with a feature extraction method name
StatsCollector - class marf.Stats.StatsCollector.
Not Implemented
StatsCollector() - Constructor for class marf.Stats.StatsCollector
 
Stochastic - class marf.Classification.Stochastic.Stochastic.
Class Stochastic
STOCHASTIC - Static variable in class marf.MARF
Indicates to use stochastic models for classification
Stochastic(FeatureExtraction) - Constructor for class marf.Classification.Stochastic.Stochastic
Stochastic Constructor
StorageManager - interface marf.Storage.StorageManager.
Interface StorageManager
streamedRecognition() - Static method in class marf.MARF
Meant to provide implementation of the buffered sample processing for large samples.
strMessage - Variable in class marf.util.MARFException
Error message container
strMethod - Variable in class marf.gui.Spectrogram
To differentiate file names based on the feature extraction method name.
strTrainingSetFile - Variable in class marf.Storage.TrainingSet
TrainingSet file name

T

threshold - Variable in class marf.Classification.NeuralNetwork.Neuron
Activation threshhold
train() - Static method in class marf.MARF
Training mode
train() - Method in class marf.Classification.Classification
Generic training routine for building/updating mean vectors in the training set.
train() - Method in class marf.Classification.Markov.Markov
Not Implemented
train() - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Implementes training of Neural Net
train() - Method in class marf.Classification.Stochastic.Stochastic
Not Implemented
train() - Method in class marf.Classification.RandomClassification.RandomClassification
Simply stores incoming ID's
train(double[], int, double) - Method in class marf.Classification.NeuralNetwork.NeuralNetwork
Actual training of the net
train(double, double, double) - Method in class marf.Classification.NeuralNetwork.Neuron
Neuron training
TrainingSet - class marf.Storage.TrainingSet.
TrainingSet -- Encapsulates Speaker ID and speaker's clusters of "feature" sets
TrainingSet.TrainingSample - class marf.Storage.TrainingSet.TrainingSample.
TrainingSample contains one item in the training set.
TrainingSet.TrainingSample(TrainingSet) - Constructor for class marf.Storage.TrainingSet.TrainingSample
 
TrainingSet() - Constructor for class marf.Storage.TrainingSet
Construct a training set object.
type - Variable in class marf.Classification.NeuralNetwork.Neuron
Current neuron type

U

ULAW - Static variable in class marf.MARF
Indicates ULAW incoming sample file format
ULAW - Static variable in class marf.Storage.Sample
ULAW sample format
ULAWLoader - class marf.Storage.Loaders.ULAWLoader.
Not Implemented
ULAWLoader() - Constructor for class marf.Storage.Loaders.ULAWLoader
ULAWLoader Constructor
UNDEF - Static variable in class marf.Classification.NeuralNetwork.Neuron
Indicates undefined neuron type
UNK - Static variable in class marf.Storage.Sample
Unknown sample format
updateSample() - Method in class marf.Storage.SampleLoader
UpdateSample() is just used whenever the AudioInputStream is assigned to a new value (wave file).

W

W3C_XML_SCHEMA - Static variable in class marf.Classification.NeuralNetwork.NeuralNetwork
XML 2001 Schema
WAV - Static variable in class marf.MARF
Indicates WAV incoming sample file format
WAV - Static variable in class marf.Storage.Sample
WAVE sample format
WaveGrapher - class marf.gui.WaveGrapher.
Class WaveGrapher
WaveGrapher(double[], double, double, String, String) - Constructor for class marf.gui.WaveGrapher
Constructor
WAVLoader - class marf.Storage.Loaders.WAVLoader.
Class WAVLoader
WAVLoader() - Constructor for class marf.Storage.Loaders.WAVLoader
WAVLoader Constructor.
writeAudioData(double[], int) - Method in class marf.Storage.SampleLoader
Writes audio data into the sample's audio stream.
writeAudioData(double[], int) - Method in class marf.Storage.Loaders.MP3Loader
Not Implemented
writeAudioData(double[], int) - Method in class marf.Storage.Loaders.ULAWLoader
Not Implemented
writeAudioData(double[], int) - Method in class marf.Storage.Loaders.WAVLoader
Buffers the contents of audioData into audioBuffer

A B C D E F G H I J L M N O P Q R S T U W